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PREFACE

Bounded nominal paths can be constructed in the vicinity of the

interior equilibrium point (sometimes called a libration or Lagrange

point) ior the Sun-Earth+Moon Elliptic Restricted Three-Body Problem.

Numerical integration is used to generate the periodic or quasi-

periodic reference trajectories in this effort, and the numerical data

is then curve fit using a cubic spline routine. The force model used

in this effort includes solar radiation pressure, the gravitational

attractions of the Sun and the Earth+Moon barycenter, and the

centrifugal force associated with rotation of the system. A spacecraft

near a libration point orbit between the Earth and the Sun can study

the interaction of the Sun's corona with the terrestrial environment

and will thus be of great scientific value.

The spacecraft will, however, drift from the nominal path, and the

forces affecting the spacecraft orbit have differing levels of

uncertainty. Both range and range-rate tracking also include

inaccuracy in the measurement. The accumulated error in the

spacecraft's position and velocity relative to the nominal path after a

predetermined period of tracking can be computed. This error, or

uncertainty, in the spacecraft state is measured through simulations,

commonly referred to as orbit determination error analysis, and is

presented as either variances or standard deviations of the state

vector elements.

The state uncertainty computed in the error analysis can then be

input to a station-keeping algorithm. The algorithm computes control

manuevers that return the spacecraft to the vicinity of the nominal

(unstable) path. A control algorithm is required for an interior

libration point orbit, and variations in orbital shapes and sizes may

have some effect on the station-keepiig costs. Several algorithms are

derived and are used to test differences in station-keeping costs.

This effort is supported by the Frank J. Seiler Research

Laboratory and has been conducted as doctoral research under the

direction of Professor K.C. Howell, School of Aeronautics and

Astronautics, Purdue University, West Lafayette, Indiana.
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INTRODUCTION

With the expansion of space exploration programs worldwide,

interest has increased in the design of innovative, complex, and yet

low-cost spacecraft trajectories that meet demanding mission

requirements. In most of the missions flown in the last few decades,

the spacecraft spent the majority of the flight time in a force

environment dominated by a single gravitational field. For the

preliminary mission analysis in these cases, additional attracting

bodies and other forces could be modeled, when required, as perturbing

influences. Analysis of some recently proposed and more adventurous

missions, such as those involving libration point orbits. will require

dynamic models of higher complexity, since at least two gravitational

fields are of nearly equal influence on the spacecraft throughout the

majority of the mission. Thus, trajectories determined for a system

consisting of numerous gravitational forces have been of particular

theoretical and practical interest in recent years.

One type of many-body problem, motion within a three-body system

of forces, has a wide range of applications. The general problem of

three bodies assumes that each body has finite mass and that the motion

is a result of mutual gravitational attraction. When the mass of ,ne

of the three bodies is assumed to be sufficiently small (infinitesimal)

so that it does not affect the motion of the other two bodies

(primaries) in the system, the "restricted three-body problem" results.

The primaries can be further assumed to be moving in known elliptic or

circular orbits about their common center of mass. Therefore, the

elliptic restricted three-body problem, where the primaries are assumed

to be in known elliptic orbits, may be considered a reasonably

approximate model for a spacecraft moving within the gravitational

fields of the Sun and the Earth, for instance.



In the ormulation of the restricted three-body problem, one mass

is def' :d as infinitesimal relative to the remaining two masses

(primaries). The primaries, unaffected by the infinitesimal mass, move

under their mutual gravitational attractions. In the elliptic

restricted three-body problem (ER3BP), the primaries are assur -' to

move on elliptic paths. If the eccentricity of the primaries' orbit is

assumed to be zero, the circular restricted three-body problem (CR3BP)

results. Even for known primary motion, however, a general,

closed-form solution for motion of the third body of infinitesimal n.dss

does not exist. In the restricted three-body problem (ER3BP or CR-EP),

five equilibrium (libration) solutions can be found. These equilibrium

points, sometimes called Lagrange points, are particular solutions Cf

the equations of motion governing the path of the infinitesimal mass

moving within the gravitational fields of the primaries.

The equilibrium points are defined relative to a coordinate system

rotating with the primaries. At these locations, the forces on the

spacecraft are in equilibrium. These forces include the gravitational

forces from the massive bodies and the centrifugal force associated

with the rotation of the system. (The addition of solar radiation

pressure to the force model changes the locations of the five Lagrange

points, although they can still be defined, and these solar radiation

effects are discussed in Gordon The libration points are located

in the plane of primary rotation. Three of the libration points are on

the line between the two massive bodies, and one of these collinear

points is interior to the primaries. The last two points are at the

vertices of two equilateral triangles in the plane of primary rotation.

The triangles have a common base that is the line between the primary

masses.

For the CR3BP, the five libration points are stationary relative

to the rotating reference frame. If the problem is generalized to the

ER3BP, the libration points pulsate as the distance between the

primaries varies with time. In both the circular and elliptic

restricted problems, two-dimensional and three-dimensional

trajectories, both periodic and quasi-periodic paths, can be computed

in the vicinity of these libratlon points.
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Three-dimensional, periodic "halo" orbits in the vicinity of the

collinear libration points have been studied since the late 1960s.

Early work concerning these orbits was motivated by studies related to

exploring the far side of the Moon. These studies were completed in

support of the planned Apollo 18 lunar exploration mission that was

later canceled. Robert Farquhar coined the term "halo" to describe a

three-dimensional, periodic orbit near a libration point on the far
[2]

side of the Moon in the Earth-Moon system. These orbits were

designed to be large enough so that the spacecraft would be constantly

in view of the Earth and would thus appear as a halo around the Moon.

A communications station in this type of orbit could maintain constant

contact between the Earth and a lunar experimentation station on the

far side of the Moon.

Quasi-periodic orbits near libration points are also currently of

great research interest. The variations in size and shape that a

quasi-periodic orbit can exhibit may add valuable flexibility for

mission planning. This type of bounded, three-dimensional libration

point trajectory is called a Lissajous orbit since specific planar

projections of these quasi-periodic trajectories may lock like a

special type of "Lissajous" curve. Physicist Jules Antoine Lissajous

(1822-1880) investigated curves that were generated by compounding

simple harmonic motions at right angles, and he delivered a paper on

this subject to the Paris Academy of Sciences in 1857. Nathaniel

Bowditch of Salem, Massachusetts, had conducted some similar work in

1815. Lissajous curves have a wide variety of shapes that depend on

the frequency, phase, and amplitude of the orthogonal components of the

motion.[4,5 When the in-plane and the (orthogonal) out-of-plane

frequencies of the linearized motion are nearly (but not) equal, the

resulting path is typically called a Lissajous trajectory.

A method to generate approximations for this type of

quasi-periodic orbital path was developed analytically by Farquhar and
[6]

Kamel in 1973. They derived a thi.rd-order approximate analytic

solution for a translunar libration point orbit in the Earth-Moon ER3BP

that also included solar gravity perturbations. In 1975, Richardson

and Cary then developed a fourth-order analytic Lissajous approximation

in the Sun-Earth+Moon barycenter system.17  The notation "Earth+Moon"

3



indicates that the Earth and the Moon are treated as one body with mass

center at the Earth-Moon barycenter. In consideration of the lunar

perturbation, Farquhar has shown that the accuracy of solutions in the

Sun-Earth CR3BP can be enhanced if the collinear libration points are

defined along the line between the Sun and the center of mass o: 'he

Earth and the Moon. Since 1975, a few researchers have considered

methods to numerically generate Lissajous trajectories, but the lack of

periodicity of a Lissajous path complicates numerical construction of

bounded trajectories. Howell and Pernicka have developed a numerical

technique for determination of thrr.-dimensional, bounded Lissajous

trajectories of arbitrary size and duration. [9-141 Orbits computed

with their method are used in this effort to define the nominal path

near which the spacecraft will be maintained.

Trajectory determination for a spacecraft that moves under the

influence of a two-body system of forces will, however, be affected by

many sources of error, including tracking errors, modeling uncertainty,

and, possibly, control input errors. Orbit determination error

analysis seeks to quantify the impact of the numerous errors that

affect the motion of the spacecraft. The result of the error analysis

is a determination of the spacecraft position and velocity uncertainty

after some predetermined period of flight during which the spacecraft

is affected by both the uncertainties in the forces and the errors in

tracking data. The combined magnitude of the errors may be found to

vary depending on the size and shape of the spacecraft orbit. A

reduction in, or a more accurate estimation of, the magnitudes of the

individual errors may be possible and could then lead to a significant

reduction in overall vehicle position and velocity uncertainty.

This reduced level of position and velocity uncertainty may, In

turn, reduce orbital "maintenance" costs, such as the propellant

required to keep the spacecraft near the nominal orbit. The orbital

maintenance routine is referred to here as "station-keeping." This

cost is, In part, dependent on the accuracy of the tracking information

because position updates using inaccurate tracking data may result in

inefficient use of control energy and may also lead to unacceptable

spacecraft drift from the nominal path. Other error sources may also

4



affect spacecraft drift from the (unstable) reference trajectory and,

therefore, may increase station-keeping costs.

This research is concerned with developing and evaluating

station-keeping algorithms for libration point orbits. The errors

derived in orbit determination error analysis studies are used as

random inputs in Monte Carlo simulations of the competing

station-keeping algorithms. Other random inputs include solar

radiation pressure uncertainty and control input errors. The output of

the station-keeping trials Is a function of the several random inputs

and is consequently treated as a random variable. Statistical goodness

of fit tests and equivalence of means and variances tests can then be

appropriately conducted. The results associated with orbits designed

to be periodic and quasi-periodic orbits are also compared. Chapter 1

briefly summarizes the background of the elliptic restricted three-body

problem. Chapter 2 then derives several station-keeping methods, and,

finally, Chapter 3 covers the results obtained.

5



CHAPTER 1: BACKGROUND

In this chapter, the elliptic restricted three-body problem and

the associated coordinate systems are reviewed; the equations of motion

for an infinitesimal mass moving in the gravity fields of two massive

bodies are then presented. Next, locations of the libration points are

discussed. The state transition matrix and the construction of bounded

nominal orbits near the collinear Lagrange points are then summarized.

Finally, curve fitting the nominal trajectory is covered. A more

thorough discussion of these topics is presented in Gordon. [1,151

A. Elliptic Restricted Three-Body Problem

The elliptic restricted three-body problem is a simplification of

the general problem of three bodies. In the general three-body

problem, each of the three bodies is assumed to be a particle of finite

mass and, thus, exerts an influence on the motion of each of the other

bodies. Neither the general nor the restricted problem of three bodies

has a general closed-form solution. However, when problem

simplifications are made, particular solutions can be determined. If

the mass of one of the bodies is restricted to be infinitesimal, such

that it does not affect the motion of the other two massive bodies

(primaries), the restricted three-body model results. The primaries

are assumed to be in known elliptic (ER3BP) or circular (CR3BP) orbits

about their common mass center (barycenter). The problem can then be

completely described by a single second-order vector differential

equation with variables appropriately defined for a specified

coordinate frame.

6



B. Coordinate Systems

The two standard coordinate systems used in the analysis of this

problem have a common origin at the center of mass (barycenter) of the

primaries. Primaries with masses m and m such that m 1 m are1 2 1 2

assumed here, although this distinction Is arbitrary. The

infinitesimal mass is denoted as m . These masses (m ,m ,m )

correspond to particles situated at points Pit P2, and P3,

respectively. The barycenter is denoted as "B," and the resulting

arrangement is shown In Figure 1-1. The rotating coordinate system is

defined as xRyRzR, and the inertial system is identified as x Iyz1.

Note that both coordinate systems are right-handed, and the x and y

axes for both systems are in the plane of motion of the primaries. The

x axis Is, of course, assumed to be oriented in some fixed direction;I

in this specific formulation of the problem, It is assumed to be

parallel to a vector defined with a base point at the Sun and directed

toward periapsis of the Earth's orbit. The rotating x axis is definedR

along the line that joins the primaries and is directed from the larger

toward the smaller primary. The z axes are coincident and are directed

parallel to the primary system angular momentum vector. The yI and R

axes complete the right-handed x IyzI and xRyRz R systems, respectively.

7
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C. Equations of Motion

Newtonian mechanics are used to formulate the equations of motion

for m3 (the spacecraft) relative to B as observed in the inertial3

reference frame. The sum of the forces on m resulting from both the3

gravity fields of masses m (the Sun) and m2  (the Earth-Moon

barycenter) and from the solar radiation pressure can be used to

produce the following second-order vector differential equation:

G n (- m 2 kS -p =- G( d- G ( - r+ kS ) d. (1-1)

3 3rdd

The overbar denotes a vector, and primes indicate differentiation

with respect to dimensional time. All quantities are dimensional, as

appropriate, and the quantity "G" is the universal gravitiational

constant. The scalars "d' and "r" in equation (1-i) denote the

magnitudes of the vectors d and T, respectively, as depicted in

Figure 1-1. The dimensionless scalar 'k" is the solar reflectivity

constant, and "S" is the solar radiation pressure constant. The

formulation of the solar radiation force model and the values for the

solar radiation constants are derived from previous work by Bell. [161

The values of the constants are described in Gordon.

The position vector p is written in rotating components as

P xxR +Y +z (1-2)

where x R, Rz R are unit vectors. The velocity and the acceleration of

the spacecraft (particle P with mass m ) relative to the barycenter B3 3
as observed in the inertial reference frame can then be described. The

following kinematic expression for T" can be derived:

9



= (,,2x+,, ,2 A , A"-O"y-20'y'- x)x R +(y"+O"x+20 x -e y)yR+z zR. (1-3)

Three scaled equations of motion for P can be derived using the3

the following scaling factors:

(1) The sum of the masses of the primaries equals one
mass unit.

(2) The mean distance between the primaries equals one
unit of distance.

(3) The universal gravitational constant is equal to one
unit by proper choice of characteristic time.

The dimensional equations of motion can be simplified and scaled

by introducing the characteristic quantities defined above and by

introducing the nondimensional mass ratio p, "psuedo-potential" U, and

the scaled solar radiation constant s:

mP 2 (1-4)
m+m

1 2

and

U I)+ i + i (X2 + y2 )k s tl-5)d r 2 d

where the dot denotes the derivative with respect to characteristic

time. The scaled solar radiation constant, s, is derived by using the

characteristic quantities described above. Then, the vector aagnitudes,

"d" and "r," are written in terms of scaled quantities as:

10



d = [(x + p R)2 + y2 + z 2I /2 , (1-6)

2 211/2

r [(x - R + P R) 2 + y + Z . (1-7)

The three scalar second-order differential equations that result

can be written in terms of characteristic quantities as

au
8x

u U (1-10)
z3Z z

If the primaries are assumed to be moving in a circular orbit,

equations (1-8), (1-9), and (1-10) reduce to three scalar equations in

the simplified form:

11



- 2 y = OUy n-= .x (1-11)

~au
y+2 - U, (1-12)

- =U. (1-13)az z

The scalar equations can be used to locate the five libration

points in the rotating reference frame.

D. Locations of the Lagrangian Points

By using scalar equations (1-11), (1-12), and (1-13) for motion in

the CR3BP, the locations of the stationary equilibrium points can be

determined. Equations (1-8), (1-9), and (1-10) can be used to

determine ratios of distances that are constant in the ER3BP; these

ratios are related to the locations of libration points that have been

defined in the ER3BP and that "pulsate" with respect to the rotating

reference frame as the distance between the primaries varies with time.

1. The CR3BP

In the CR3BP, the five libration points are equilibrium points and

are stationary with respect to the rotating coordinate frame, that is,

they are locations at which the forces on the third body sum to zero.

The arrangement of points and the corresponding nondimensional

distances are depicted in Figure 1-2. Note that three of the libration

points (L1, L2, L3 ) are collinear with the primaries; one collinear

12
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Figure 1-2. Lagrange Point Locations in the Scaled CR3B3P.
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point (L ) is interior to the primaries. The remaining two points (L4

and L ) are located at the vertices of two equilateral triangles that

are in the plane of primary rotation and that have a common base

between the primaries.

In the CR3BP, the libration points are stationary in the rotating

coordinate frame. Stationary points are defined as points at which the

relative velocity and acceleration are zero, such that

x = y : = x= = 0. (1-14)

By using equations (1-14) in equations (1-11) through (1-13), the

useful conditions U = U = U = 0 are found. The three collinear
x y Z

libration points can be readily located by further noting that

y = z = 0 for the points located on the rotating x axis.R

2. The ER3BP

Five libration points also exist in the ER3BP, but they are not

stationary relative to the rotating frame; rather, the collinear points

pulsate along the xR axis, and the triangular points pulsate relative

to both the xR and the yR axes as the distance between the primaries

varies with time. The equilibrium solutions can be located by using

equations (1-8) through (1-10) to find ratios of certain distances

that are, in fact, constant in the problem. The collinear libratlon

points in the ER3BP can be found by assuming x * 0, x * 0, andy = y =

= z = y = z = 0. The relative locations of the libration points in

the ER3BP are depicted in Figure 1-3.

14
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E. State Transition Matrix

The state transition matrix is used in the calculation of the

acceptable nominal trajectory, and it must also be available at varying

time intervals along the nominal path for orbit determination error

analysis investigations and station-keeping studies. The transition

matrix is derived in connection with a linearizing analysis.

The equations of motion for the infinitesimal mass in the ER3BP

can be linearized about a reference trajectory (nominal path) that is a

solution of the differential equations. The states, three position and

three velocity, and the state vector x are defined as

x =xx yx z , x 4  x, x = y, x =z, (1-15)

and

= [x , x2 , x , x4, x , x6 ]T (1-16)

The reference trajectory is defined as x . Therefore, using aREF

Taylor's series approach, the expansion about the reference path is

written in the form of the first-order variational equation

d
d-( x) = x = AMt x (1-17)

where x = X - x is understood to be the vector of residuals relative
REF

to the nominal solution, and the matrix At) contains the first-order

terms in the Taylor's series expansion of the equations of motion about

the nominal or reference solution of interest.

16



Using equations (1-8) through (1-10), ACt) can be expressed as

A(t) = (1-18)
Jrr+bf 269

where all four submatrices are dimension 3x3 and

[Uxx Uxy Uxz]

Urr= Uyx Uyy Uyz (1-19)

Uzx Uzy Uzz

with

0= - 0 0
0 0 0

In equation (1-19), the notation is simplified for the partial

derivatives; for instance

2u

= Uxx.
ax2

The matrix A(t) can then be evaluated along the reference trajectory.

The vector differential equation (1-17) governing the state

variations from the nominal path has a solution of the form

17



X(t) = (t,t ) X(t ) (1-20)

where 0(t,t ) Is the state transition matrix at time "t" relative to
0

time "t ." The matrix 0, then, represents the sensitivities of the
0

states at time "t" to small changes in the initial conditions. It is

determined by numerically integrating the niatrix differential equation

d
;-*(t,to) = i(t,t o) = At) (t,t) (1-21)

with initial conditions (t 0,to) = I, the 6x6 identity matrix. Thus,

the nonlinear equations of motion in (1-8) through (1-10) and the

matrix equation (1-21) combine to result in 42 first-order differential

equations that can be simultaneously Integrated numerically to

determine the state vector and Its associated transition matrix at any

instant of time. The reference trajectories that are of Interest in

this research are generated by a numerical integration method that uses

a differential corrections process developed by Howell and
[9-14]

Pernicka. The orbits include solar radiation pressure forces as

formulated by Bell [161 specifically for an orbit associated with the

interior Lagrange point in the Sun-Earth system. The numerical

integration routines used in this work are fourth- and fifth-order

Runge-Kutta formulas available in the 386-Matlab software package. [171

F. Bounded Orbits Near Libration Points

The computation of bounded periodic and quasi-periodic orbits in

the vicinity of libration points has been of increasing interest during

the past 100 years. This section first discusses the stability of the

libration points in the CR3BP and the ER3BP. The construction of

bounded orbits near the collinear Lagrange points is then summarized.

18



Finally, the specific reference trajectories used in the orbit

determination error analysis and station-keeping studies in this work

are introduced.

1. Stability of the Libration Points in the CR3BP

The accomplishments of those researchers who have constructed

bounded orbits near collinear libration points are particularly

significant because the collinear points are considered "unstable"

points of equilibrium but with (only) one mode producing positive

exponential growth. Bounded motion in their vicinity, therefore, is

determined by deliberately not exciting the unstable mode. A second

mode produces negative exponential orbital decay and is also

deliberately not excited. In the CR3BP, the remaining four eigenvalues

are purely imaginary. The existence of initial conditions that result

in only trigonometric (sinusoldal) functions as solutions means that

the collinear libration points, while unstable, possess conditional

stability (with proper choice of initial conditions) in the linear
(181sense.

The triangular libration points are marginally stable in the

linear sense for a specific range of primary mass ratio in the CR3BP.

Purely imaginary roots in two conjugate pairs are obtained for p1.0385,

which is given here to four decimal places and is sometimes referred to

as Routh's value. The mass ratios (listed here to three decimal

places), for example, In the three-body systems of the Earth-Moon

(p = 1.216 x 10-6), Sun-Earth+Moon (p = 3.022 x 10-6 ) and Sun-Jupiter

(p = 9.485 x 10-4 ) all satisfy the mass ratio requirement for marginal

stability of the triangular points In the linearized model. Natural

satellites, such as the Trojan asteroids or a moon of Saturn, occupy

linearly stable orbits near triangular libration points in their

respective systems.
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2. Stability of the Libration Points in the ER3BP

Several researchers have analyzed the stability of the libration

points in the elliptic problem, where both the mass ratio, p, and the
[18-22J

primary orbit eccentricity, e, Influence stability. The

instability of the collinear libration points as determined in the

circular problem for all the values of mass parameter persists for the

elliptic problem; an analysis of the collinear points shows Instability

for any combination of the values of both p and e.

The results of a linearized stability analysis regarding the

effects of eccentricity and mass ratio on the linear stability of the

triangular points have been published by Danby1211 and then later by
[221

Bennett Both Danby and Bennett have numerically generated graphic

depictions of the linear stability region in the p-e plane. For the

eccentricity in the Sun-Earth+Moon ER3BP, the value of p which ensures

linear stability is only slightly less than Routh's value (decreased by

approximately one percent). An interesting aspect of the p-e stability

region is tha. a range of values of p greater than Routh's value also

defines a region of linear stability for a specific range of values of

e less than .3143.

3. Construction of Bounded Collinear Libration Point Orbits

The initial goal in the process of generating bounded orbits near

a collinear (unstable) libration point is to avoid exciting the

unstable mode associated with the linearized motion. The meteoric dust

particles that may be orbiting near Lagrange point L in the Sun-Earth2

system could only linger near that point if they arrive with the

"correct" initial position and velocity states relative to L . The2
"correct" initial conditions will only (primarily) excite the stable

modes associated with the linearized motion and not (or minimally)

excite the unstable mode. The degree to which the unstable mode is

excited will determine the length of time that the dust particles

linger near L 2

2
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The third-order analytic representation is used in this work to

provide the initial model for the trajectories. The method of

successive approximations, using the linearized solution as the first

approximation to the nonlinear orbital path, and the method of dual

time scales are used to derive the third-order result. [6,7,231 The

method of successive approximations Is used to generate an asymptotic

series In an appropriately small parameter. (The square root of the

eccentricity of the primary orbit, that is the orbit of the Earth-Moon

barycenter about the Sun, Is the small parameter used here.) The

method of dual time scales Is used to convert the system of ordinary

differential equations Into a system of partial differential equations.

In general, the method of multiple scales allows the various nonlinear

resonance phenomena to be included in the approximate analytic solution

and provides a method to remove secular terms. (Here, "secular" refers

to terms that include the time variable and Is derived from the French

"slcle" meaning century.)

The analytic solution of Richardson and Cary [7  for the

Sun-Earth+Moon ER3BP has been derived to fourth order, but the third-

order approximation is found to be sufficient for this research.

A numerical integration algorithm, using a differential corrections

procedure that is designed to adjust the first guess as obtained from

the analytic approximation, can then be used to nunerically generate

the orbit of interest. A method developed by Howell and Pernicka1
9-141

Is used here to generate the orbital paths. Their method initially

employs the approximate analytic solution to compute target points. A

two-level (position matching then velocity matching), multi-step

differential corrections algorithm is used to construct a numerically

integrated, bounded trajectory that is continuous in position and

velocity. A solar radiation pressure model developed by Bell is

also incorporated in the numerical integration procedure.

The method of Howell and Pernicka, including solar radiation

pressure, uses an initial analytic guess that represents a halo orbit

or, alternatively, a considerably smaller Lissajous path. The

higher-order terms tend to slightly alter the first-order periodic or

quasi-periodic path. Consequently, the initial target path for a halo

orbit will generally not be precisely periodic. The two-level,
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multi-step differential corrections procedure then adjusts the initial

analytic target orbit and, therefore, will compute a halo-type orbit

that is nearly (but not exactly) periodic.

4. The Reference Paths Generated for This Work

Precisely periodic halo orbits exist in the CR3BP. They also

exist in the ER3BP, but, in the ER3BP, they are multiple revolution

trajectories with periods much longer than those of interest here.

Nearly periodic orbits are more practical in the ER3BP and are much

more likely to be used in mission planning; therefore, the goal here

should be slightly modified to be the comparison of Lissajous and

"halo-type" orbits. The general shapes of the three-dimensional

halo-type and Lissajous orbits can be seen by plotting three

orthographic views of each orbit, using the tabular data from the

numerical integration routine. Figure 1-4 depicts three orthographic

views of point plots for the Lissajous orbit used in this research.

Figure 1-5 contains three orthographic views (on a slightly different

scale) of the considerably larger halo-type orbit. (Note that, in

general, the amplitude ratio for Lissajous trajectories is arbitrary.

In halo orbits, however, constraining the amplitude ratio results in

equalized frequencies for in-plane and out-of-plane motion.) The

orbits are depicted in the rotating reference frame centered at L .1

Both orbits are clearly not periodic; a Lissajous orbit is often

called a quasi-periodic path, and these two orbits could clearly be

termed quasi-periodic or Lissajous paths. The major difference between

the orbits is the larger size of the halo-type orbit; however, other

differences are also present. The maximum x and y excursions of the

halo-type orbit are approximately four times as large as those of the

Lissajous path. Furthermore, the direction of motion (clockwise versus

counterclockwise), as viewed in the y-z orthographic depiction, is

different for the two orbits used here. The direction of motion on the

halo-type orbit is counterclockwise in the y-z depiction; the direction

of motion is clockwise in the y-z depiction for the Lissajous path.

(Both orbits include clockwise motion in the x-y depiction.)
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The two orbits can also be differentiated in terms of the

direction of the maximum z excursion in the x-z depiction. If the

maximum z excursion is In the positive z direction, the orbit can be

termed a member of a "northern family" of orbits. When the maximum z

excursion of the orbit Is In the negative z direction, the orbit is

termed a member of a "southern family" of orbits. In the x-z

orthographic depiction, the smaller (Lissajous) path can be seen to be

a member of a northern family of orbits, while the halo-type orbit is a

member of a southern family of orbits.

Future work with these two orbits will include studies that

generally require access to a nominal path that is at least piecewise

smooth. Some method of curve fitting the numerically integrated data

must consequently be investigated.

5. Curve Fitting the Nominal Path

The primary goal of this work Is the completion of orbit

determination error analysis for libration point trajectories. The

conventional method for solution of state estimation problems, and the

technique used in this effort, involves linearizing the nonlinear

equations of motion about a reference solution (nominal path) and then

applying linear estimation techniques. The orbit determination process

Is thus changed from estimating the state of a nonlinear system to

estimating the linear, time-varying deviations from the reference

trajectory.

The reference solution used In this research Is generated by

numerical integration of the nonlinear equations of motion. In one

study, an investigation that used a consistent dynamic model for all

comparisons, Richardsonlei has shown that a slight reduction in fuel

expenditure can be realized If a numerically integrated, rather than an

approximate analytic, nominal path is computed. The numerical

integration method developed by Howell and Pernicka (9-14] Is used here

to generate a set of reference points for both position (three states)

and velocity (three states), relative to the libration point of

interest, at specified times. Time series point plots of all six state
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variables for approximately a 2-year segment of a Lissajous orbit are

depicted in Figures 1-6 (position states) and 1-7 (velocity states).

The method computes numerical data for the six states In a reference

frame that Is centered at the libration point (in this case L ) and1

that rotates with the primaries. However, the state estimation

techniques and station-keeping algorithms used in this work require

access to a continuous nominal path, rather than point plots, of

acceptable accuracy.

The reference trajectory, represented as a (piecewise) smooth

curve, could be constructed, approximately or exactly, through the

points obtained from the numerical integration routine. The work here

assumes that a curve that passes through the numerical data (exactly)

is preferred. The effort required to generate a numerical solution,

including forces modeled consistent with the ER3BP (or even more

accurately modeled with ephemeris data) would seem to be wasted if the

reference curve deviates too far from the numerical data. However, a

method that approximates a smooth curve through the points is also

desirable; that is, linear interpolation between the numerical data

points was not considered acceptable. In one study, Pernicka 91 found

that station-keeping costs for a libration point orbit were, in fact,

sensitive to the accuracy of the curve fit. Clearly, a piecewise

linear curve fit could not accurately match the concavity of the actual

orbital path between data points, regardless of the size of the time

steps used in the numerical integration routine.

Four methods of generating a curve for the nominal trajectory have

been evaluated: Fourier series, least squares, weighted least squares,

and cubic splines. The states associated with a quasi-periodic path

were thought to be the most difficult to curve fit; therefore, various

Lissajous trajectories were used to evaluate the curve-fitting methods.

After several curve fitting evaluations, a cubic spline interpolation

routine was selected to be used to model the reference trajectory in

the state estimation simulations. The comparisons of the curve fit

methods are fully described in Gordon.
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G. Orbit Determination Error Analysis Results

Complete, exact knowledge of the state of a spacecraft in orbit is

generally not possible. Individual state variables cannot be measured

precisely, and available measurements are usually some function of

these state variables. For instance, a spacecraft moving along a

libration point trajectory in the Sun-Earth system may be tracked using

range and range-rate measurements containing random errors. The

spacecraft may be affected by forces not included (or inadequately

represented) in the dynamic model, and model parameters may be

uncertain. By definition, the linearized system of equations used to

model the nonlinear state variations is a further approximation. Also,

actual control inputs may vary slightly in magnitude and direction from

those commanded. These sources of error make knowledge of the

spacecraft state uncertain. Computation of the most likely current

state of the spacecraft in the presence of measurement and model

uncertainty is the focus of orbit determination.

Error analysis involves an investigation of the impact of various

sources of error on orbit determination. The output of an error

analysis, as used in this work, provides the magnitudes of state vector

variances and covariances, thus quantifying the relative contributions

of the significant error sources. This output could then be used to

predict how an improvement in measurement accuracy, for instance, would

lessen state uncertainty. One benefit of more accurate knowledge of

the state might be a reduction in station-keeping costs. A

mathematical procedure can be developed to combine all information

about the spacecraft state and filter this observed data based on the

varying degrees of uncertainty. The filter then produces a "best

estimate" of the state and additionally quantifies the resulting state

variable uncertainties in preparation for an error analysis.

The orbit determination error analysis results can, in turn, be

used in Monte Carlo simulations of competing station-keeping

algorithms. The state error levels can be modeled as random errors

with a specified mean and probability distribution. Of course, other

error sources, such as solar radiation pressure urcertainty and control
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input errors, can also be modeled in the Monte Carlo simulations.(241

Gordon discusses the evaluation of several orbit determination

error analysis methods, uses hypothesis tests to determine the means

and probability distributions of the errors, and computes the error

levels appropriate for use in the station-keeping simulations. The

state uncertainty levels are found to closely follow a zero-mean

Gaussian distribution, and these state error levels are presented in

Table I in terms of state element standard deviations.

Table 1. Error Levels Produced from Error Analysis Studies.

One Standard Deviation Levels

Coordinate Halo-Type Orbit Lissajous Orbit

x (km) 1.46 1.25

y (kmi) 2.64 3.35

z (km) 4.81 3.19

x (mm/sec) 1.40 1.25

y (mm/sec) 1.85 1.41

z (mm/sec) 2.49 2.51
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CHAPTER TWO: STATION-KEEPING ALGORITHMS

Because of unavoidable errors, similar to those associated with any

space mission, a station-keeping strategy is necessary to maintain the

spacecraft within some predefined torus about the planned nominal path.

The size and shape of the torus are determined by mission objectives

including the possibly related requirements for orbit determination,

scientific experimentation, and minimum fuel expenditt' c. For example,

the nominal path may be computed to the highest degree of accuracy to

meet both scientific specifications and tracking considerations. The

size of the torus may then be tailored from "tight" to "loose"

depending on mission objectives and compariso" of fuel expenditures

for various options.

This chapter is organized into six sections. The first section

contains an overview of the general station-keeping problem. The

second section summarizes the derivations of two similar controllers,

one of which has been used for libration point orbit station-keeping

simulations. The next two sections summarize the derivations of two

related control algorithms formulated for this work. Both of these

station-keeping methods in the third and fourth sections are

innovations on methods previously derived by Dwivedi 2 5, 2 6
1 and

Pernicka 9 . The fifth section contains a description of an on/off

controller developed for this work.

The sixth and final section contains comparisons of the control

costs derived from use of the station-keeping methods developed in this

work for both a halo-type orbit as well as a more general Lissajous

orbit. The comparisons require the use of statistical hypothesis tests

similar to those used in the last section of chapter two. A

station-keeping simulation will produce a scalar value for the total
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propellant expended (Av T); also, each separate simulation will be

subject to several random inputs and can, therefore, be considered a

random trial. A group of random trials (station-keeping simulations)

using consistent random inputs can then be treated as a random sample.

The hypotheses tested in this final section pertain to the type of

probability distribution that the random samples most closely follow

and to equality of population variances and means.

A. Definition of the Station-Keeping Problem

Even for an accurate nominal trajectory, unmodeled as well as

poorly modeled forces on the spacecraft will generally be present, and

the resulting modeling errors may be a contributing cause of spacecraft

drift from the nominal path. As was discussed in Chapter 1, a

trajectory near a collinear libration point is designed to excite only

the stable modes associated with the motion. When the spacecraft

deviates from this nominal trajectory, the unstable mode may be

excited, and drift from the path may then increase exponentially with

time. A station-keeping method can thus be used to combat this drift

and keep the spacecraft acceptably close to the nominal path. Of

course, specifications associated with the station-keeping procedure

will influence the deviations from the nominal path. For example, as

the torus about the nominal path is relaxed or as the minimum

acceptable separation time between control inputs is increased, drift

from the nominal path may increase.

How large will the drift be? Table 2 contains the partial results

from several numerical simulations and illustrates the magnitude and

direction of spacecraft drift from a nominal halo path due to

deterministic errors in initial conditions ("Ax") or solar reflectivity

("Ak"). For these simulations, the deterministic initial position

errors are computed from a consistent position on the halo orbit. The

units for position deviations are kilometers; the units for velocity

deviatios are in millimeters per second.
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Table 2. Nominal Path Deviations due to Deterministic Errors.
(The units for position are kilometers; velocity is
In mm/sec.)

Deviation from the Nominal Path after

Ax 20 days 40 days 60 days 80 days

Ak=O Ak=.13 Ak=O Ak=.13 Ak=O Ak=.13 Ak=O Ak=.13

x 1 4.5 14.6 11.9 59.0 -5.9 122.5 -59.4 242.5

y 1 1.5 -.6 -.9 -14.7 -12.5 -56.7 -35.6 -153.0

z 1 2.1 1.9 2.1 1.0 5.6 3.5 6.9 9.9

x 1 3.3 15.8 6.8 38.5 -2.4 64.3 -28.4 116.7

y 1 -.5 -3.8 -1.9 -13.0 -.9 -26.9 5.0 -61.5

1 .1 -.2 -.8 -1.6 -.2 .1 -.5 6.4

x 1 38.6 138.2 316.2 677.0

y 1 7.4 -16.8 -94.0 -286.2

z 1 15.0 17.0 13.8 18.1

10 44.1 83.9 157.4 317.1

y 10 -4.2 -24.6 -58.9 -151.5

z 10 4.9 -3.2 -3.0 10.4

x 1 278.2 930.2 2253.8 5025.0

y 1 39.5 -37.7 -466.5 -1616.8

z 1 42.6 177.8 116.7 100.5

100 81.7 538.0 1088.6 2324.1

y 100 -23.4 -141.2 -378.4 -1051.2

i 100 -18.5 -18.9 -43.5 503.2

x 10 20.2 30.3 51.7 98.7 85.6 214.0 141.7 443.6

y 10 7.3 5.3 -3.9 -17.8 -33.6 -77.8 -100.6 -218.0

z 10 7.1 6.9 -1.9 -3.1 -6.3 -8.4 -4.4 -1.4

x 1 11.6 24.1 27.1 58.9 39.8 106.5 63.1 208.3

y 1 -4.0 -7.3 -9.0 -20.0 -16.1 -42.1 35.8 -102.3

1 -4.3 -4.5 -6.3 -7.2 -3.1 -2.8 4.0 11.0
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Table 2, continued.

Devlatlon from the Nominal Path after
Ax 20 days 40 days 60 days 80 days

Ak=O Ak=.13 Ak=O Ak=.13 Ak=O Ak=.13 Ak=O Ak=.13

x 50 90.0 100.1 228.1 275.1 491.9 620.3 1035.4 1337.4

y 50 33.4 31.5 -17.5 -31.3 -127.1 -1,1.3 -389.6 -507.0

z 50 29.6 29.4 -19.8 -20.9 -59.2 -61.3 -54.6 -51.6

1 48.4 60.9 117.5 149.3 227.4 294.1 470.0 615.3

y 1 -19.7 -23.0 -40.3 -51.4 -83.5 -109.5 -217.2 -283.7

z 1 -23.4 -23.7 -31.0 -31.8 -16.0 -15.7 24.5 31.4

x 50 124.2 354.3 814.1 1772.0

y 50 39.5 -33.4 -208.5 -640.1

z 50 42.6 -4.9 -51.0 -43.3

x 10 81.7 194.7 387.2 815.8

y 10 -23.4 -63.0 -141.5 -373.7

z 10 -18.5 -33.4 -19.6 35.4

x 100 177.3 187.4 448.7 495.8 999.9 1128.4 2152.9 2455.0

y 100 66.2 64.2 -34.4 -48.2 -243.9 -288.1 750.7 -868.0

z 100 57.7 57.5 -42.1 -43.3 -125.3 -127.4 117.3 -114.3

x 1 94.5 106.9 230.5 262.3 462.0 528.7 1000.0 1124.4

y 1 -39.3 -42.6 -79.5 -90.5 -167.8 -193.8 -400.0 -510.4

z 1 -47.3 -47.6 -61.8 -62.7 -32.0 -31.7 -100.0 57.1

x 200 351.7 361.9 890.0 937.0 2016.2 2144.7 4390.0 4691.8

y 200 131.6 129.5 -68.2 -82.0 -477.6 -521.7 -1472.3 -1589.6

z 200 1.1 113.6 -86.9 -88.0 -257.5 -259.6 -242.4 -239.4

x 1 186.0 199.0 456.6 488.4 931.4 998.1 1998.6 2144.0

y 1 -78.6 -81.9 -157.8 -168.9 -336.1 -362.1 -897.0 -963.4

z 1 -95.1 -95.4 -234.8 -124.3 -64.2 -63.8 -101.6 1086.6
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Notice that the magnitude of the drift is sensitive to both

initial velocity and initial position deviations and that a solar

reflectivity constant error of 13% also has a substantial effect on the

drift. Of course, the drift will undoubtably vary, perhaps in a minor

way, depending on the size and shape of the nominal orbit and the

location on the path at which the deviations are evaluated. Clearly,

however, a spacecraft can quickly move quite far from the nominal path.

One approach that might be considered for a station-keeping

strategy is to redefine the nominal path such that it passes through

the current position. (Some guidance procedures for interplanetary

missions have successfully employed such a scheme.) Unfortunately, an

additional complication associated with a libration point orbit is

that a nominal path cannot generally be defined through all possible

positions. A bounded orbit may not exist through an arbitrary point,

and the computational difficulty required to construct a nominal orbit

through an approximate set of coordinates also makes redefining the

nominal path during flight virtually impossible. Therefore, a

station-keeping algorithm that returns the spacecraft to a torus about

the reference trajectory is essential.

A station-keeping strategy must combat the exhibited drift from

the nominal path while satisfying some predetermined set of

specifications. It is not uncommon for a station-keeping scheme to

include constraints related to quantities such as the timing of

manuevers, control magnitude, and deviation distance from the nominal

path. (Of course, additional types of constraints have been

implemented in other guidance schemes and could possibly prove

beneficial In future libration point orbit studies.) Identifying a

lower bound for such quantities may be necessary to allow time for

orbit determination and to help ensure efficient use of control energy.

Figure 2-1 illustrates the decision process necessary to implement the

minimal restrictions typically used in the control algorithms developed

in this chapter. Each of the decision steps depicted in Figure 2-1 may

serve to delay the input of control force.
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For a collinear libration point orbit, a small deviation from the

(unstable) nominal trajectory can lead to rather large drift from the

path In a short time. In effect, the station-keeping algorithm must

combat both the current drift from the path In addition to the

exponential Increase in the drift that is expected if no correction is

implemented. Any delay In the control actuation may allow the drift to

increase and to thus compound the station-keeping problem. The

magnitude of the drift can be clearly seen in Table 2. Of course, in

such a nonlinear problem, it is possible for the spacecraft to begin

returning to the nominal path on its own. Another possible constraint

for the station-keeping scheme could be a check on the growth or decay

of the drift. This check on the spacecraft's drift from the nominal

path may serve to delay a control input, or it may prove efficient to

input control energy at the current time to "assist" the drift back to

the path. The optimal timing (now or at some future "best" time) to

implement a given control input is a possible area for future research.

The goal of the station-keeping routine is then to keep the

spacecraft "close enough" to the reference trajectory. The allowable

deviations may depend on the simulation experience with a given control

algorithm and on mission constraints, including the propellant cost

that can be tolerated. The evaluation of various minimal restrictions

is addressed in later sections. When the spacecraft is "near" the

nominal trajectory, it is reasonable to model the deviations from the

reference path using linear analysis. Consistent with such a model, an

investigation of the problem Incorporating linear control theory is

thus initiated.

B. Previously Developed Station-Keeping Strategies

Early work by Dwivedi 125 2 6 1 resulted in development of a control

procedure that is derived from minimization of a cost functional. His

approach was developed for interplanetary space flight; however, it

also shows promise as a controller for libration point orbits. The

cost function is defined by weighting both the control energy used at

an initial time and the expected deviations of the spacecraft from the
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nominal path at two distinct times in the future. The points used to

compute deviations from the nominal path are referred to in this work

as "target points." These points are defined along the nominal path at

predetermined times that are called "target times." (More than two

target points can be used; this modification proves valuable later in

this effort.) A vei-lon . Dwivedi's c,)itt-oller, using distinc,.

manuever times, is summarized here, and an extended derivation used by

Pernicka 19  is then also described.

In Dwivedi's algorithm, the cost function includes several

submatrices partitioned from the state transition matrix. The state

transition matrix is derived, in the usual way, through a linearizing

process relative to the nominal path. For notational ease, the state

transition matrix is partioned into four 3x3 submatrices as

A B[kO kO
~t k 't o0 ) = .(2-1)

ko kO

Dwivedi's controller, in this formulation, computes a Z-v input (a

3xl vector), with magnitude denoted as Av, for a time denoted as t .0

The Zv is added to the initial velocity states in the numerical

integration routine in order to change the deviation of the spacecraft

from the nominal path at some future times. In this derivation, m is

the position deviation (a 3xl vector) and 7 is the velocity deviationk

(a 3x1 vector) of the spacecraft from the nominal path at time t k with

k = 1, 2, etc. If e is the residual velocity (a 3x1 vector) and p 0 is

the residual position (a 3x1 vector) relative to the nominal path at

time t 0 then a Ev input at t could be used to predict ;k for k = 1,

2, etc. For instance, when the Initial position x includes an Initial0

velocity perturbation e, a delta velocity Av, and an initial position
[241

perturbation p 0 the state propagation equation provides:
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xk = = (tk to) xO = O(tktO) [ "] (2-2)
k 0

+

As an example, for two target times tI and t2, and by assuming that p0

is the zero vector,

=B +B (2-3)1 10 0 10

and

= B ; + B (2-4)
2 20 0 20

Dwivedi's approach was developed for application to interplanetary

missions and, consequently, includes the assumption that position

deviations from the nominal path have a minor effect on spacecraft

drift when compared to velocity deviations. Hence, p is allowed to be

the zero vector when deriving equations (2-3) and (2-4) from equation

(2-2). The target times tI and t2 are computed by adding incremental

times AtI and At2 to to) respectively. For instance, if AtI = 40 days,

At = 70 days, and t = 0 days, then t = t + At = 40 days and the2 0 1 0 1

second target time t = t + At = 70 days.2 0 2

The cost function that will be minimized is

J (K) = ZvT Q Ev + m R m+ MT S (2-5)1 1 2 2

where the weighting matrix Q is symmetric positive definite, and the

weighting matrices R and S are positive semidefinite. Equation (2-5)

can be written in terms X-v by substituting equations (2-3) and (2-4)
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into equation (2-5). Figure 2-2 depicts a version of Dwivedi's

station-keeping routine that allows the control input at a specified

time other than t and that uses two target times, which are actually

incremental times At and At added to the initial time t
1 2 0

Determination of the Av corresponding to the relative minimum of

this cobt functior. allows a .lnear equation for the Optimail .. cntrcI

input (Y'w ) to be found: 125, 261

-. BT BT Bo]- T BT

v = -[Q + B R B + B S B 1 [BT R B + B S B] . (2-
10 10 20 20 10 10 20 20 0

Note that equation (2-6) assumes control implementation at time t 00
This derivation could be generalized to include the possibility of

time-varying weighting matrices and a v input at some time t after to,

and these generalizations could be the subjects of valuable future

research concerning libration point orbital control.

Howell and Pernicka 9 ,271 modified the above controller to also

include the effects of position deviations at time t . Dwivedi's0

approach assumes that velocity perturbations have a much greater

propagative effect than position deviations from the nominal path.

Because of the unstable nature of libration point orbits, it was

reasoned that both position and velocity residuals from the nominal

path should be included in the error propagation equations such as

equation (2-3) and equation (2-4) for Dwivedi's controller. An example

of the relationship between position and velocity errors at t and the0

resulting residuals at varying time steps later was illustrated in

Table 2.
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to  t t1t 2

e' m-T S m.1 m2 S f

1 sh 1  Mll 2Sfl

U = VELOCITY DEVIATION FROM THE NOMINAL
PATH AT TIME t. THIS IS A 3 x 1 VECTOR.

-iT
m= POSITION DEVIATION FROM THE NOMINAL

PATH AT TIME tj IFK IS INPUT AT TIME t.
THIS IS A 3 x 1 VECTOR.

m= POSITION DEVIATION FROM THE NOMINAL
PATH AT TIME t2 IF ' IS INPUT AT TIME t.
THIS IS A 3 x 1 VECTOR.

R, S ARE 3 x 3 POSITIVE SEMIDEFINITE
WEIGHTING MATRICES USED IN THE COST
FUNCTION.

Figure 2-2. Dwivedi Control Routine.
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Certainly, both position and velocity offsets from the nominal

trajectory do appear to make a substantial contribution to spacecraft

drift from the nominal path. For this derivation, Fo is the nonzero

position residual vector (3xl) and e is again the nonzero velocityo

residual vector (3x ) at time to; by using equation (2-2), the

following Lwo equaAl..s can be derived:

m =B 0 i0+ B 037+ A lo (2-7)

= B ; + BoAv + A (2-8)
2 20 0 20 200O

Figure 2-3 is a depiction of the Howell/Pernicka controller LhaL uses a

conLrcl input at t and also uses two target times (at predetermined

incremental times beyond t ). The cost function that is minimized0

remains as

J () = Av- Q v + -MT R m + . .2-9)
1 1 2 2

Using equations (2-7) and (2-8) in equation (2-9), the optimal control

is obtained by minimizing the cost function in terms of Ev, and it then

becomes [9,27]

-. BT BT -1 TBT-

v=- [ Q + R B +B SB [(BT R B +B S B +
10 10 20 20 10 10 20 20 0

TRS A0) 0 ]  (2-10)
10 10 20 20 0
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to t t 2

'o= VELOCITY DEVIATION FROM THE NOMINAL
PATH AT TIME to . THIS IS A 3 x 1 VECTOR.

-6o= POSITION DEVIATION FROM THE NOMINAL
PATH AT TIME to. THIS IS A 3 x 1 VECTOR.

91= POSITION DEVIATION FROM THE NOMINAL
PATH AT TIME tl IF 5' IS INPUT AT TIME to.
THIS IS A 3 x 1 VECTOR.

= POSITION DEVIATION FROM THE NOMINAL
PATH AT TIME t2 IFt'0 IS INPUT AT TIME to.

THIS IS A 3 x 1 VECTOR.

R, S ARE 3 x 3 POSITIVE SEMIDEFINITE
WEIGHTING MATRICES USED IN THE COST
FUNCTION.

Figure 2-3. Howell/Pernicka Control Scheme
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Clearly, the Howell/Pernicka formula [9'271 for the optimal control

input Is slightly more complicated than that derived using Dwivedi's

approach. The Inclusion of the position deviation (Fo) in equation

(2-10), versus using equation (2-6), may be shown, in fact, to reduce

the control costs. Both the Dwivedi and the Howell/Pernicka control

algorithms can be used for quasi-periodic and periodic libration point

orbits. Howell and Pernicka [9,271 used their control law (2-10) for a

spacecraft in a halo-type orbit near the Interior libration point in

the Sun-Earth+Moon system, and their algorithm was formulated to

include several features. Minimal separation times of up to 80 days

between control inputs were used. This is a realistic feature because

the orbit determination process and the control input computations

require some minimal work time. The 80-day control separation time was

selected to roughly correspond t' the timing between manuevers used for

ISEE-3. They also included a minimal control input ("Av") magnitude in

their formulation. Modern propellant devices do have restrictions

concerning the minimal control energy that can be accurately expended,

and the errors relative to the commanded control may be a function of

the control magnitude. (In fact, the control uncertainty modeled later

in the station-keeping simulations may be Inversely related to control

magnitude.) The values that Howell and Pernicka used for the minimal

Av ranged between .01 and .5 meters per second depending on the

specific simulation completed.

Incorporating a torus of acceptable size about the nominal path is

also a useful feature. Howell and Pernicka used a torus that ranged

between 0 and 100 kilometers in radius. If the specific torus

dimensions were not violated, even when all other conditions for a

control Input were met, no F would be expended. The control costs

found in Howell and Pernicka [9,271 are generally comparable to those

found In other investigations. (These results will be included In the

last section of this chapter.) However, It is noted that simulations

that included tracking and injection errors and a minimum control

separation time of 80 days had relatively high propellant costs. These

propellant costs are also obviously a function of the target point

spacing; therefore, changes in specifications may enable some reduction
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in the cost. It should also be noted that ISEE-3 was successfully

controlled at a cost that was lower than the propellant cost predicted

by pre-mission station-keeping simulations. Further investigation of

the choices of weighting matrices (both constant ana time-varying), the

number of target points, and the target spacing may prove valuable;

alternatively, a controller that also weights velocity residuals at the

target times may prove to be an improvement.

C. Delta-Velocity Controller I

An innovation LLdt also adds velocity residual weighting in the

cost function of the Howell/Pernicka [9' 271  controller provides

promising results. For this controller, the velocity residuals at t1

(denoted by ') and t2 (denoted by 2) are 3x1 vectors that can be

computed as

mI A 10 B 0 PO

(2-11)

Co Do +1
1 10 20J

20 20 0 (2-12)

K C D ;; + N
2_L 20 20j

The cost function for this controller (Delta-Velocity Controller I) is

then

T T - -T - -T - -T -

J (N) = Z Q -v + M R + V R v + m S m + V S v (2-13)
1 v 1 2 2 2 v 2'
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where the added weighting matrices, R and S , are positive
V V

semidefinite. (This formulation is further complicated by the addition

of two weighting matrices that must be somehow chosen. In general,

there does not appear to be an strategy that can optimally select the

weighting matrix entries for this controller or for the station-keeping

routines of Dwivedi or Howell and Pernicka. Extensive experimentation

in addition to investigator judgement are often successfully used;

however, a selection method for the weighting matrix entries will be a

val..,be area of future research.)

Using equations (2-11) and (2-12), the following equations for the

residuals at time t and t can be found:
1 2

m I = B 1e + BIO0-Z + A IOPO (2-14)

W2 =B2oo + B2o A20po (2-15)

v = D e + D Av + C p, (2-16)1 D100o 10 C100o

v =D e +DAv + P (2-17)2 D200o D20 C200o

Recall that t and t are computed by adding incremental times At1 2 1

and At2 , respectively, to the initial time t . Figure 2-4 is a

depiction of the Delta-Velocity Controller I that uses a control Input

at the initial time t and includes two target times (t and t ). The0 1 2

weighting of velocity errors in the cost function will obviously

complicate the derivation.
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AV

to t t 2

S V2

§o= VELOCITY DEVIATION FROM THE NOMINAL
PATH AT TIME t. THIS IS A 3 x 1 VECTOR.

Po = POSITION DEVIATION FROM THE NOMINAL

PATH AT TIME to. THIS IS A 3 x 1 VECTOR.

= POSITION DEVIATION FROM THE NOMINAL
PATH AT TIME t 1 IF 9 IS INPUT AT TIME to.
THIS IS A 3 x 1 VECTOR.

=1 VELOCITY DEVIATION FROM THE NOMINAL
PATH AT TIME t1 IFv IS INPUT AT TIME to.
THIS IS A 3 x 1 VECTOR.

M2 = POSITION DEVIATION FROM THE NOMINAL
PATH AT TIME t2 IF&v- IS INPUT AT TIME to -THIS IS A 3 x 1 VECTOR.

V2= VELOCITY DEVIATION FROM THE NOMINAL
PATH AT TIME t 2 IF5 IS INPUT AT TIME to -
THIS IS A 3 x 1 VECTOR.

R, S, R,, SvARE 3 x 3 POSITIVE SEMIDEFINITE
WEIGHTING MATRICES USED IN THE COST
FUNCTION

Figure 2-4. Delta-Velocity Controller I.
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Equations (2-14) through (2-17) can be substituted into equation

(2-13), and the relative minimum of this function of W7 (after

considerable algebra) is found to be

Q BT T T T -110 10l 20 20 10 V 10 20 v 20

Av= [Q+B+ B T S B + DTRD +D SD T  +

10 10 20v 10 20 v 20

(B10R AO+  
0

S A+ DT R C +DT S C )o] (2-18)to 1 20 0 10V 10 20 v20 0

In the final section of the chapter, this control law will be

shown to provide excellent results for station-keeping of a libration

point orbit. However, when the minimum separation time between control

inputs is increased to 60 or 80 days, this controller tends to exhibit

an increase in cost. Perhaps a controller that looks further downtrack

may provide some improvement in control costs.

D. Delta-Velocity Controller II

One way to add cost function weighting to residuals farther along

the track would be to increase the size of incremental times At and

At . Alternatively, a third target point can be added to the2

formulation of Delta-Velocity Controller I; this adjustment can permit

the target times to be approximately equally spaced (an arbitrary

choice) with At = 40 days, for instance. This adjustment will be

shown to increase the robustness and decrease the cost of the

station-keeping algorithm, especially when the minimum control input

separation times are extended to 60 or 80 days.
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For this formulation, position and velocity residuals at time t3

are added as 3x1 vectors ; and 3 to give:3 3

1 10 10J

m ]= : 2: A 20 B p0 P (2-20)

Figure 2-5 depicts the elements of Delta-Velocity Controller II that

includes the weighting of velocity errors at the target points, the 
use

of three target times, and a control input at time t0 .

The cost function now includes terms for the third time step and

becomes

,J - T
v+m9v R v + m S m + vS v + mT ; + vTv (2-22)

1 1 lVi 2 2 2 V2 3 3 3 v3
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to t1 t 2  t 3
fT R i1 ffS in ffg T fn3

sV 2  ;73~
o= VELOCITY DEVIATION FROM THE NOMINAL

PATH AT TIME to. THIS IS A 3 x 1 VECTOR.

7-= POSITION DEVIATION FROM THE NOMINAL
PATH AT TIME to. THIS IS A 3 x 1 VECTOR.

= POSITION DEVIATION FROM THE NOMINAL
1 PATH AT rIME t1 IF 5" IS INPUT AT TIME to-

THIS IS A 3 x 1 VECTOR.
71= VELOCITY DEV;ATION FROM THE NOMINAL

PATH AT TIME tj IFAv- IS INPUT AT TIME to.
THIS IS A 3 x 1 VECTOR.

F 2= POSITION DEVIATION FROM THE NOMINAL
PATH AT TIME t2 IF X IS INPUT AT TIME to.
THIS IS A 3 x 1 VECTOR.

72 = VELOCITY DEVIATION FROM THE NOMINAL
PATH AT TIME t2 IF' ; INPUT AT TIME to
THIS IS A 3 x 1 VECTOR.

73= POSITION DEVIATION FROM THE NOMINAL
PATH AT TIME t3 IF T IS INPUT AT TIME to.
THIS IS A 3 x 1 VECTOR.

3= VELOCITY DEVIATION FROM THE NOMINAL
PATH AT TIME t3 IF E IS INPUT AT TIME to
THIS IS A 3 x 1 VECTOR.

R, Rv, S , Sv , T, T ARE 3 x 3 POSITIVE SEMI-

DEFINITE COST FUNCTION WEIGHTING MATRICES

Figure 2-5. Delta-Velocity Controller I1.
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where the added weighting matrices, T and T , are positive
V

semidefinite. The cost function can be written in terms of Av by using

substitutions for m and v k with k = 1, 2, and 3, derived from

equations (2-19), (2-20), and (2-21). The relative minimum of this

function of Av (after considerable algebra) is found to be

Av-*=-[Q+B T R B +BT S B +BT T B +DT R D +DT S D +DT TD 1 -x
10 10 20 20 30 30 10 v 10 20 v 20 30 v 30

( +BT S B .BT T B +DT R D +DT S D +D T D ) +
10 10 20 20 3 10 v 10 20 v 20 30 v 30 0

(B TR A +BTSAB T T A +DT R C +DT S C +DT T C )F. (2-23)
10 10 20 20 30 30 10 v10 20 v20 30 v300

The general method described above could certainly accommodate the

inclusion of additional target points. The relative value of using

additional target points and an algorithm for selecting the weighting

matrix entries both seem to be potential areas for future research.

Preliminary work using entries from the state transition matrices has

shown some degree of promise in choosing the weighting matrix entries.

Results to date are inconclusive.

The third type of controller investigated is termed an on/off

station-keeping method because the control energy is input as an

acceleration, added for a few days and then removed for varying periods

up to 80 days. The on/off type of controller is fundamentally a

modification of a discrete-time continuous controller that is modified

to be more operationally feasible.
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E. On/Off Controller

The station-keeping method considered for use here is state

feedback control computed from minimization of a quadratic cost

function. [28 -311 Other researchers [32,331 have used a similar control

scheme for work concerning planned libration point orbits in the

Earth-Moon and Sun-Earth systems. The method has been shown to produce

competitively low control costs; however, this type of scheme has

significant drawbacks for actual implementation. The method as used

here assumes piecewise constant control inputs, yet thrusters typically

are not designed for constant operation. (This type of thruster is

being developed now, however, for use in the next decade.) Generally,

impulsive control inputs are preferred in practice.

The control strategy considered here incorporates the use of a

torus about the reference trajectory; the control input is delayed

until the limits of the predetermined torus are violated. Because of

actual mission constraints, this formulation also includes a specified

minimum number of days between manuevers and a minimum control input

magnitude. Simplifying assumptions, related to accommodation of the

time-varying nature of the residuals, will be discussed later. All of

these minimal constraints and as yet unspecified simplifying

assumptions make this formulation truly "suboptimal" yet

computationally simple; however, a great deal of problem insight can be

gained from this analysis.

Throughout the formulation of all of the station-keeping

algorithms, the reference trajectory is defined by six cubic splines,

one for each of the six states. The continuous, linearized residual

model is given in the following form:

x(t) = AMt) x(t) + B U(t) (2-24)

Ut) = G(t) x(t), (2-25)
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where

0 00
000

B= 0 00 (2-26)
1001
0101
001'

and A(t) is the 6x6 Jacobian matrix derived in Chapter 1. The state

feedback gain matrix is G(t). For computation of the plecewise

constant suboptimal gains, the system (2-24) is discretized to
[ 29-31,341produce.

x = 0(k+1,k) x + B U(k), (2-27)k.l k D

where xk is the residual state vector at time step k; 0(k+l,k) is the

state transition matrix at time step k+1 relative to time step k; B is0

the discrete matrix derived from B; and U(k) = G x is thek k

plecewlse constant state feedback control. The control energy is

computed in an optimal way through minimization of a quadratic cost

function.

The feedback gain, Gk, can be calculated by minimizing the

following total cost function:

n-1
T+ -TV(p) = I x P Q xk + uT(k) R U(k)], (2-28)

k=O
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where Q is the diagonal weighting matrix for state residuals; R is the

diagonal weighting matrix for control input; n is the number of time

steps used for the control inputs; p is the scalar that can be used to

vary "tightness"; and terminal state constraints are omitted.

The number of time steps needed for a given trajectory is

determined by the time in days between each computed change in control

effort and by the duration of the orbit. For example, a 6-year

trajectory with control inputs computed in 20-day segments would

require n = 108 control time steps. In general, minimization of the

cost function V(p) is obtained through a sequence of difference

equations that can be solved by a backward sweep method.
[30 ' 311

One further computational simplification employed here is to use

the stabilizing steady-state gain solution to the cost function V(p).

This steady-state assumption (n-)w) yields the following matrix solution
[291

for the state feedback gain matrix G :k

G = -(R + BT K B )-IBT K 0(k+l,k), (2-29)
k D k D D k

where

K k=T(k+l,k)K k(k+i,k)-

ST(k+lk)K B (R+BT K B ) -1BT K (k+1,k)+pQ, (2-30)
k D D kD D k

= u, u, T.u 1  (2
=  35
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Equation (2-30) is the algebraic matrix "Riccati" equation used to

compute optimal steady-state feedback gains. This algebraic matrix

"Riccati" equation is a simplification of a matrix difference equation

that has a continuous counterpart--the "Riccati" matrix differential

equation used to compute optimal state feedback in continuous

time-varying systems. These matrix "Riccati" equations were so named

by Rudolf E. Kalman in 1960. In 1724, Jacopo Francesco, Count

Riccati (1676-1754) of Venice, had considered the solution of a special

form of a scalar differential equation in his work in acoustics. (36,37]

His equations appeared in many applications related to Bessel

functions. Some 20 years earlier, James Bernoulli (1654-1705) worked
[37]

on solutions to a similar differential equation. Jean Le Rond

D'Alembert (1717-1783) was the first to work on a more general form of

these scalar differential equations and used the name "Riccati

equation" for the equations of that general form. 
[361

In this work, the continuous controller uses piecewise constant

gains. These steady-state gains are computed for time steps of 20 days

in a suboptimal scheme.f34' 38 1  The exact equations of motion are

integrated, incorporating the control inputs, in the elliptic

restricted three-body model using a Runge-Kutta fifth-order numerical

integration routine.

The differential equations to be integrated are then

-2 =u + y + u, (2-32)
x X

+ 2 u x + u, (2-33)
Y 2

=U + u . (2-34)
z 3
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The control energy is input through the constant accelerations

denoted in equations (2-32), (2-33), and (2-34) as uI, u2, and u3,

respectively. This state feedback contr- ler, using steady-state

gains, could be formulated to compute a new control U every controlk

time step. The control time step might be every 20, 30, 45, or even 60

days. In this way, a low level of accelerative control energy,

changing periodically, could be used continuously to maintain the

spacecraft within a torus about the nominal path. Figure 2-6 depicts

the control scheme for the discrete-time continuous controller. This

type of continuous controller formulation has shown excellent results;

however, the very low level of commanded control input is not

operationally feasible.

A more practical station-keeping algorithm could use an on/off

control scheme that would also incorporate the various minimal control

constraints mentioned previously. Even though an impulsive

(delta-velocity) controller is generally considered to be the

currently preferred method for station-keeping, investigation of an

on/'off iorotLioiler can lead to valuable problem insight and may someday

prove useful, given future technological advances.

For the On/Off Controller, the control inputs are set at a

constant magnitude for a given 20-day time period and are then off

(zero magnitude) until certain minimal constrants are met or exceeded.

In this formulation, the control energy is zero unless a specified

acceptable deviation distance from the nominal path is violated, a

minimum control separation time is exceeded, and a minimum control

magnitude is surpassed. The On-Off Controller is depicted in Figure

2-7. The control effort is computed by using the spacecraft's position

and velocity errors relative to the nominal state at time t tok

calculate U =G x where G is the constant state feedback gain matrixk kk k

computed in equation (2-29) for the given control time step, and xk is

the state vector of residuals from the nominal path.
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to t1  t2 t3 t4  t5

U= [ Ul, U2 , U3 ]i' =1, 2, 3, .....

U2  U2 U21/2

I ,1 E u, u tu =]

t - to =t2 -ti =t3 - t2 =t4 - t3 =t5 - t4 =At

At COULD BE 20 DAYS OR 30 DAYS OR 40 DAYS .....

FOR TH!S RESEARCH, At IS 20 DAYS.

Figure 2-6. Discrete Time Continuous Controller.
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i12

to ti t2 t3  t 4  t5  t6

T

=[Ul u' 2,U3 f,,i = 1,2,3, .....

I i 1= 1u2 31,

t 1 - t o = t2 - ti =t 3- t 2 = t 4 - t3 =t 5 - t 4 =t 6 - t5 =A~t

At COULD BE 20 DAYS OR 30 DAYS OR 40 DAYS .....

FOR THIS RESEARCH, At IS 20 DAYS.

Figure 2-7. On/Off Controller.
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The weighting factors (p, Q, and R) in equation (2-28) determine

the contribution to the total cost of deviations from the nominal path

as compared to the costs of the control inputs required to counter

these deviations. The positive scalar weight, p, has been used in

other research129 31'331  and, for this effort, p determines the

"tightness" of the control; that is, a relatively large value of p

causes residuals relative to the nominal path to be more costly. This

will, in general, force the control algorithm to input comparatively

larger control effort to maintain the spacecraft closer to the nominal

path. The R weighting matrix in the cost function, V(p), in (2-28) is

arbitrarily chosen as the 3x3 identity matrix. This value for R gives

the control input in each direction equal weighting.

The elements in the 6x6 diagonal matrix Q may be chosen in several

ways. One particular method for choosing these entries provided

results that were inconclusive here yet may prove valuable in future

research. For each control time step (20 days), the entries in the Q

weighting matrix were computed in a predetermined way from elements of

the state transition matrix evaluated at that time step. Use of the

sensitivities reflected in the state transition matrix slightly

decreased the total control cost corresponding to this station-keeping

method. This selection method for the elements of the Q weighting

matrix is an area for future investigation and is not presented here.

Secondly, both the continuous and the on/off control methods can

incorporate the estimated off-course deviation from the nominal path at

the end of a control time step in order to modify the control effort

input at the start of the step. This "shooting method" uses the

otherwise planned control input to predict the resulting error at the

end of the control time step or at some point further along the traLk,

and then adjusts the initial gains to accommodate the predicted errors.

This modification has been shown to substantially decrease the total

control costs as compared to other adjustments investigated in this

research. The results of several differing station-keeping methods are

now presented in Chapter 3.
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CHAPTER 3: STATION-KEEPING RESULTS AND COMPARISONS

Ideally, the control scheme modifications that ar6 investigated

here and the overall results from this preliminary work should be

compared to other Lagrange point station-keeping results. A criteria

for this comparison could be the magnitude of the total control effort

that is needed to successfully maintain the vehicle, satisfying all

station-keeping requirements, for a l'bration point orbit of some fixed

duration. The fixed duration for these comparisons will be a 2-year

segment of the nominal trajectory. The results of the various

station-keeping approaches that are evaluated in this research will be

shown to produce excellent results. However, before presenting any

results and then discussing the comparisons, it is necessary to address

two additional questions:

1. Are the Av random variables (approximately) normally

distributed?

2. What is a reasonable sample size?

In this Gcction, the results of each 2-year station-keeping

simulation is considered a functic-i of several random inputs and is,

therefore, treated as a random trial. Each station-keeping simulation

produces a total propellant value (Av T ) that is a scalar measure of the

cost of station-keeping for that 2-year period. The simulation that

produces thz n' variable is subject to several random inputs and,T

consequently, will vary for each Monte Carlo trial (simulation) of the

station-keeping algoritm. Several independent simulations (random

trials), where the input random variables have consistent statistical

characteristics (mean and variance), will produce a random sample of

Av results (one for each simulation). That Is, each station-keeping
T
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run Is treated as a random trial with random variable Av (the
T

magnitude of total Nv for the two-year orbit), and a group of random

trials for which all the Input variables (torus size, tracking error

levels, etc) remain the same are then treated as a random sample. This

resulting sample can then be tested to see if it fits the Gaussian

distribution; the somewhat related question of the required number of

station-keeping runs per sample must then be addressed.

If the results of the station-keeping simulations were simply a

linear combination of Gaussian random variables, the resulting

distribution of Av would be Gaussian. This simple representation isT

not true here; therefore, It Is necessary to complete a chi-squared

goodness of fit test on the results of several trial runs in an initial

sample. (Certainly, there are other statistical tests that can be

used to determine whether a sample is drawn from a Gaussian

distribution; the chi-squared test is not the most powerful, but it is

the most easily presented.) Choosing a sufficiently large sample size,

comparing population means, and constructing confidence intervals can

be simplified by knowing the probability distribution of the propellant

costs. Hence, the computation of a sufficient sample size apriori will

permit the comparison of station-keeping methods with a minimal number

of simulation runs.

The results and comparisons that follow also include statistical

comparison tests for equivalent variances and equivalent means of the

values for Av resulting from station-keeping analyses using LissajousT

and halo-type nominal orbits. The test for equivalent means between

populations of, say, halo-type and Lissajous orbit propellant costs
[391

(AVT ) requires the use of a pooled variance equation. The pooled

variance equation in turn assumes that the sample variances are from

populations with equivalent variances; therefore, the statistical

hypothesis test for equal population variances will logically preceed

the test for equal population means.
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A. Distribution of Delta-Velocities

Histograms of Monte Carlo simulations for the Delta-Velocity

Controller II and the On/Off Controller are shown in Figures 3-1 and

3-2, respectively. The histograms are plotted using ten classes of

equal width. The vertical axis is the relative frequency of the values

of AvT in that class. The propellant costs (values of Av T) for

station-keeping on a 2-year halo-type orbit are plotted along the

horizontal axis. The class midpoints are labeled; however, the

relative magnitudes of the Av results for these two controllers shouldT

not be used to compare the two controllers. This comparison of AvT
values for the various station-keeping algorithms will be completed

later in this section. Both histograms show a close resemblance to a

histogram based on the Gaussian distribution. (Recall that the general

shape of a Gaussian distribution is determined by the variance; the

sample mean affects the expected frequencies computed from the Gaussian

probability distribution and thus also helps to determine the shape of

the histogram that could be constructed using expected frequencies.)

In Figures 3-1 and 3-2, the observed frequencies from the sample are

printed above the classes in the histograms. The approximate expected

frequencies, computed from the Gaussian distribution using the means

and standard deviations of the samples, are printed in parentheses

below the classes of the histograms.

The chi-squared goodness of fit test is appropriately used here to

verify mathematically that the frequency distribution used to construct

the given histogram fits the Gaussian distribution. In order to

investigate this resemblance, the hypotheses tested and the decision

rule are:

Hypotheses:

H :Distribution is Normal.
0

H :Distribution is not Normal.

Decision Rule:
2 2

If X S , conclude H0

Otherwise, conclude H
I
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Figure 3-1. Histogram for Total Delta-Velocities Resulting from use of Controller 1U.
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Typically, the chi-squared goodness of fit test includes the

listing of expected frequencies (F I) that are computed under the

assumption that the null hypothesis (H ) is true. The null hypothesis

here is that the distribution of the values of Av follows the Gaussian
T

distribution; therefore, the ten class boundaries must be determined in

terms of the standardized normal variable (Z) in preparation for

computation of the expected class probabilities. The class boundaries

in terms of the standardized normal variable can then be used with a

standard table of probability values for the Gaussian distribution to

compute expected probabilities. The expected frequencies for each

class can then be calculated. The expected frequencies (F ) and the

observed frequencies (the f that can be read directly from the

histograms or frequency distributions) are then used in the computation

of the test statistic. The test statistic X2 can be calculated as

k (f - F)2

X1 = E (3-1)
1=1 F

Table 3 summarizes the mathematics of the chi-squared goodness of

fit test for the frequency distribution of the Delta-Velocity

Controller II in Figure 3-1.

For this test, the chi-squared random variable (X 2 ) has k-2-1 = 5

degrees of freedom, reduced due to required pooling. (Pooling is

required because the expected frequency in any class must be at least

two for the chi-squared goodness of fit test.) The level of confidence
2

is 95%. Therefore, X = 11.07. For the distribution depicted by the

histogram in Figure 3-1,

k (f - FI)2

X = 6.639.
1=1 F
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Table 3. Chi-Squared Goodness of Fit Test for Figure 3-1.

F f X 2
Class Boundaries Z Values Probability I 1 1

.1415 .1681 -w -2.622 .0044 .462 1 .

.1645 .1946 -2.622 -1.973 .0200 2.100 1

.1946 .2211 -1.973 -1.325 .0674 7.077 5 .6096

.2211 .2477 -1.325 - .676 .1565 16.433 17 .0196

.2477 .2742 - .676 - .027 .2397 25.169 31 1.3512

.2742 .3007 - .027 .621 .2440 25.620 20 1.2328

.3007 .3273 .621 1.278 .1673 17.567 22 1.1190

.3273 .3538 1.278 1.919 .0729 7.655 4 1.7447

.3538 .3803 1.919 2.567 .0222 2.331 3 .

.3803 .4068 2.567 0 .0052 .546 1

2
(Note: The symbol Indicates pooling.) X2=6.639

The other frequency distribution whose histogram is displayed in

Figure 3-2 yields a similar small value for X2. The decision rule then

leads to the conclusion that the distribution of the Av values is
T

normal for both controllers. For normally distributed random

variables, small sample sizes (less than 30) can be used, and there can

still be confidence that the sample means are normally distributed.

Unless the distribution of the Av values was highly skewed, a sampleT

size of 30 would generally ensure that the sample means were

approximately normally distributed. Therefore, confidence intervals,

using the standard normal (Z) or student's t) distribution can be

readily constructed using sample sizes of 30.

One other restriction on the minimum sample size could be the

required width of the confidence intervals. Specifically, the larger

the random sample size, the narrower the resulting confidence interval

for the mean. The need for a "narrow" confidence interval must

therefore be weighed against the difficulty in gathering the data. A
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sample, as used here, is a group of station-keeping (Monte Carlo)

simulations for which the minimal constraints are the same and the

Input errors have Identical means and variances. A sample can then

also be termed a "case" for later comparison with other cases

(samples). The sample size is denoted here by the symbol "n", and

sample sizes of 30 are generally adequate to ensure that the sample

means are at least approximately normally distributed. However, this

value of n must also be large enough to make "useful" confidence

intervals.

B. Sample Sizes for Simulation Runs

One goal that motivates the use of several random trials

(simulations) of a station-keeping algorithm is the desire to construct

confidence intervals for the mean AV, here denoted as AV for the

sample. A sample size of perhaps 20 (or even 40) for a normally

distributed random variable may not provide a confidence interval that

is narrow enough for comparison purposes. Too many runs can,

alternatively, be inefficient while adding little to the value of the

study. The selection of an appropriate sample size requires the choice

of confidence level (derived from the selected a risk) and interval

half width (h). The standard deviation of the population is the

parameter o that can be estimated by the sample statistic s (sample

standard deviation). The confidence interval for the actual population

mean p is typically constructed surrounding the sample mean (A;), such

that:

A 112 A112

Av + (-Z )/n sji s Av + (Z )/n , (3-2)

or

AV -h S Av + h. (3-3)
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Therefore,

h = (Z -)/n1 /2 . (3-4)

Solving for n results In the following approximate guideline for

selecting a sample size:

n = (Z w)2/h 2 (Z s)2/h2 . (3-5)

Notice that this estimate for n uses an approximate value (s) for

a and a judgement concerning the size of an acceptable half width (h).

The Z value is obtained from tables that are available for the

standardized normal variable, using the fact that one-half of the

a risk Is placed in each tail of the distribution. By choosing h to be

less than approximately 10% of a Av value that is equal to

.2753, h can be selected as .020 meters per second. The sample

standard deviation (s) is .0409 meters per second. The standard normal

variable, computed for a = .01 (a level of confidence of 99%), is

2.576. Hence,

n = [(2.576)(.0409)] 2/(.020)2 = 27.75 -) 28 (round up).

Clearly, this is a very approximate method to select the sample

size n; however, sample sizes of 30 should clearly provide sufficiently

accurate confidence intervals. The value of the half width (h) for a

given confidence interval will depend on the sample's standard

deviation s). In other samples, it will undoubtedly differ from the

.020 meters per second used in this example. However, knowing that the

Av random variables are approximately normally distributed and, in oneT

case, a very narrow confidence interval could be constructed with a

sample size of 28, further Monte Carlo simulations are completed using

30 runs for each sample.
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C. Results and Comparisons

In this section, results from station-keeping simulations are

presented. Each station-keeping method discussed earlier is

represented. The results are listed in the order in which the

algorithms were derived, and the population variances and values of the

mean AvT (denoted as Av) are statistically compared for station-keeping

relative to the halo-type or Lissajous orbit defined earlier. The

final subsection provides a survey of libration point orbit

station-keeping costs listed in some other works. Note that the

following notation will be employed in this section for convenience:

At is the minimum time between control inputs, Av is the minimum

control input magnitude, d is the minimal distance of the spacecraftDin

from the nominal path before a control input is allowed (this is then

also the size of the acceptable torus); 0 is an individual (vector)

delta-velocity input with magnitude Av; Av is the (scalar) totalT

delta-velocity resulting from a single 2-year station-keeping

simulation; "n" is the number of simulations in a given sample and is

often called the sample size; Av is the (scalar) average of all the vT

values in a given sample of n simulations; "s" is the standard

deviation from the sample of n simulations; and a "case" is a sample of

n station-keeping simulations for which the means and variances of all

the input variables plus the constraints are held at consistent levels.

1. Delta-Velocity Controller I Results

The first delta velocity controller derived in this work provides

excellent station-keeping costs when the minimum time that must elapse

between manuevers (At m n ) is specified as 40 or 60 days. The results

when At is equal to 80 days are less promising; however, these costsmmn

may be substantially reduced by an improved selection method for the

target times (described below) and weighting matrix entries. Both

subjects would certainly be areas for future research effort.
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The target times are chosen for this work depending on the value

of At in (which is certainly not the only method of choosing the

targets) and are summarized as one of three possibilities:

Atmin  40 days then t =t 20 days and t = t + 40 days,

at 60daysthent= t + 40 days and t = t + 60 days,mt 1n =6 aste 0I  t 2 0

Atmi n  80 days then t I = t o  40 days and t = t + 80 days.

The weighting matrix entries are held constant for these

comparisons (other methods of weighting matrix computation could also

have been used):

R =100 1 ,

1

R =10 1 
V

S=S= 1 ,

[.01 1
Q =10- 14  .1
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The results of five samples (five cases) with sample sizes of 30

each for the 2-year station-keeping simulations are depicted in

Table 4. These cases for Delta-Velocity Controller I are labeled in

the first column as I-i, 1-2, etc. The column labeled as "At

indicates the minimum separation in days between control inputs f ,r

that case. The column "Av " indicates the minimum control energy inmmn

meters per second that must be exceeded by a computed Av before it will

be implemented. These minimum Av values agree with values used in

other libration point orbit station-keeping studies. 40,41]  An

investigation by Longuski and Todd 42] also gives considerable insight

into the magnitudes of the various force levels affecting the

spacecraft. Their findings have been used to help determine the

minimum control energy levels that can be used in this effort. The

symbol "d " (torus size) is in kilometers and indicates the distancemmn

the spacecraft must be from the nominal path before a control force

will be input. All three restrictions (Atmi, Av mi, and d m n ) must be

met or exceeded before a control input is possible.

The average 2-year Av for the Lissajous orbit is indicated by
T

AV L; for the halo-type orbit, it is denoted Av . The sample standard

deviations are sL for the Lissajous orbit and s for the halo-type

orbit. Sample means and standard deviations are given in meters per

second. These sample means and standard deviations, as listed in

Table 4, are, in general, not equal for the two different types of

orbit within each case (that is, Av L Av and s * s within eachL h L H

case); however, the differences may not be statistically significant.

The significance of the differences will be discussed shortly.

The results depicted in Table 4 are derived from simulations using

the nominal orbits depicted in Figures 3-1 and 3-2. The nominal orbits

are thought to be representative of those being considered for

near-term missions. However, due to the virtually infinite variety of

sizes and shapes for these types of orbits, no claim can be made that

these results would apply to all libration point orbits.
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Table 4. Sample Means and Standard Deviations for Controller I.

Lissajous Orbit Halo-Type Orbit

# At Av d Av s Av s
mn Amn min L L H H

(days) (m/s) (km) (m/s) (m/s) (m/s) (m/s)

1-1 40 .015 0 .3276 .0737 .3395 .0717

1-2 40 .050 100 .7994 .0903 .7845 .1099

1-3 60 .015 0 1.0602 .7597 .8945 .9088

1-4 60 .050 100 1.3909 .5180 1.2804 .3105

1-5 80 .015 0 10.4138 12.8951 13.2013 10.3289

Table 5 contains other useful data concerning the Delta-Velocity

Controller I samples. This data Includes t lange of values for Lhe

random trials within each case. For instance, in case I-1, at least

one of the random trials (one 2-year Av ) for a Lissajous orbit had theT

minimum Av value of .18 meters per second. In the same sample, atT

least one run had the maximum Av value of .49 meters per second. TheT

range and the standard deviation are both measures of dispersion for

the samples.

Table 5. Ranges for Av 's and Number of Av's for Controller I.T

Lissajous Orbit Halo-Type Orbit

Average

# At Av Torus Av Range Av Range Numbermmn amn L H

(days) (m/s) (km) (m/s) (m/s) (m/s) (m/s) of AV's

I-I 40 .015 0 .3276 .18-.49 .3395 .23-.54 14-15

1-2 40 .050 100 .7994 .65-1.00 .7845 .59-1.03 10-11

1-3 60 .015 0 1.0602 .26-2.92 .8945 .27-4.46 9-10

I-4 60 .050 100 1.3901 .62-3.02 1.2804 .74-2.01 8-9

1-5 80 .015 0 10.4138 .72-31.9 13.2013 .63-35.3 7-9
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The average number of individual Av's applies to both the

Lissajous and halo-type orbits; it is the median number of control

inputs required for the 2-year station-keeping simulations within a

given case (sample). Notice that in case 1-5, one or more of the 30

random station-keeping trials required only 7 manuevers over the 2-year

period.

It is now straightforward to test whether the "type" of orbit

(Lissajous or halo-type) affects the resulting 2-year station-keeping

costs. The statistical test for equal means assumes approximately

equal sample variances, hence that will be a natural first test to

conduct. The statistical hypothesis test for equal variances assumes

that the test statistic (s2/s) follows Fisher's F probability
H L

distribution. The F distribution has two types of degrees of freedom

(numerator and denominator) and is tabulated also in terms of the level

of confidence. The degrees of freedom are 1 less than the respective

sample size (which is n) for the numerator and denominator samples; so

that the degrees of freedom in this example are 29 (which is n-1) for

both the numerator and denominator. An F statistic denoted by

F indicates 29 degrees of freedom for both the numerator(29, 29, . 995)

and denominator and a level of confidence of 99%. The a risk is then

.01 and is divided equally between lower and upper bounds in the

decision rule. The test statistic is F = (s 2/s 2), and the hypotheses
H L

and decision rule are:

Hypotheses:

2 2
H :a = 2 (Variances for halo-type and Lissajous orbits are equal.)

o H L

2 2H :0 * ¢
1 H L

Decision Rule:

fF (s2/s2) s F conclude H
(29,29,.005) H L (29,29,.995) 0

Otherwise, conclude H .
I
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In the work that follows, the lower F statistic in the decision rule is

labeled as F ; the upper F statistic is denoted F . The F1o up"

distribution value is F (29,29,.995)= F up= 2.7. The value of Flo w is

derived from the value of F and is given by F = F =up (29,29,.005) low

1/2.7 = .3704.

The cases I-I through 1-5 in Table 5 can now be analyzed for equal
variances. The numerical results and the hypothesis test conclusions

are summarized in Table 6.

Table 6. Results of Equal Variance Tests for Controller I.

# H F F F Conclusion
_(m/s) (m/s) low up

I-I .0737 .0717 .3704 .9465 2.7 H
0

1-2 .0903 .1099 .3704 1.4812 2.7 H
01-3 .7597 .9088 .3704 1.4310 2.7 H
0

1-4 .5180 .3105 .3704 .3593 2.7 H
1

1-5 12.8951 10.3289 .3704 .6416 2.7 H
0

Thus, in four out of the five cases, the variances can be assumed
to be equal. In general, there is some finite risk of finding in favor

of H even when H is true; however, this a risk (.01) was chosen to be1 0

very low in this case. The hypothesis tests for equal population means

corresponding to case 1-4 should only continue if some rough

equivalence of variances can be determined for it. Further samples in

this case could be compiled so that the hypothesis test for case 1-4

could be redone, and this could result in substantial problem insight.

However, the failure by a small margin for the hypothesis test for only

this case could also allow the use of a more liberal and general rule

of thumb: if the sample variances are within approximately one order

of maenitude, the pooled variance equation can be correctly used.
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Therefore, the hypothesis test for equal population means may be

pursued in all of these cases I-1 through 1-5.

The statistical hypothesis test for equal population means (pL for

Lissajous and A H for halo-type orbit delta-velocities) assumes that the

difference between the two population means is distributed according to
*

the Student's t distribution. The test statistic is t and is a

function of the difference between the sample means (AV -Av ).H L

The pooled variance equation is

2(n-1)S2 + (n - 1 )S2

2 L L H- H (3-40)
C (n L_1) + (nH_1)

where the number of random trials for both Lissajous (n ) and halo-type

(n ) orbits is 30 in this work. The test statistic is
H

H-Av 
Lt

(i/n +1/n )1/2
C L H

The hypotheses and decision rule are:

Hypotheses:

HO:11 = H*

HI:pL H*

Decision Rule:

If -t s t _ t, conclude H0

Otherwise, conclude H .I

The a risk of .01 is again equally divided in both tails of the t

distribution. For this hypothesis test, the degrees of freedom are

equal to (n L-1) + (n H-1), and the t statistic is ±t = 2.66.

H (.995,58)
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The numerical results and the conclusions are depicted in Table 7.

Table 7. Results of Equality of Means Tests for Controller I.

0-1
# AV Av -t t t Conclusion

L H

(m/s) (m/s)

I-I .3276 .3395 -2.66 .6314 2.66 H
0

1-2 .7994 .7845 -2.66 -.5736 2.66 H
0

1-3 1.0602 .8945 -2.66 -.7661 2.66 H
0

1-4 1.3909 1.2804 -2.66 n/a 2.66 na

1-5 10.4138 13.2013 -2.66 .9241 2.66 H
0

The hypothesis test conclusions are then, in general, that there

is no significant statistical difference between the 2-year

station-keeping costs for the Lissajous and halo-type orbits identified

in the study when Delta-Velociiy Controller I is used. The entries

'n/a" In Table 7 are for the case 1-4 for which the hypothesis test
2 2for equivalent variances led to the conclusion in favor of HI H * 0L

If the variances were pooled, t for this case would be -.9853, and Lhe

conclusion would also be in favor of equal means (H0 :1L 
= 

! H) "

Now that the statistical hypothesis tests for equal population

variances and equal population means between halo-type and Lissajous

orbits have been completed for this controller, two more short analyses

seem appropriate. Station-keeping error analysis will look at the

station-keeping (propellant) costs that can be attributed to each error

source. Finally, confidence intervals for the mean Av cost for eachT

case can be constructed here and used later in the comparison

subsection. A limited station-keeping error analysis for this

station-keeping method has been conducted, and the results are shown in

Table 8.

This error analysis seeks to quantify the relative contributions

of the individual error sources modeled in the simulations. The data

in Table 8 corresponds to results for the halo-type orbit shown in
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Figure 1-5. The injection and tracking error levels are those computed

in the chapter two orbit determination error analysis of this work for

a halo-type orbit, and the results found here are compared to those

Table 8. Station-Keeping Error Analysis Results.

Contribution i
Error Source This Work Sim6 [621

Injection Errors 2.5% n/a

Control Errors (10%) 2.0% 10.0%

Tracking Errors 55.9% 50.0%

Solar Reflectivity

Uncertainty 35.0% 15.0%

Force Model and

Integration 4.6% 25.0%

found in Simo. (401 The major difference between the error analysis in

this work and the station-keeping error analysis in Sim6 is that his

study uses random solar reflectivity errors with a standard deviation

of 2.5% versus the 13% used here. A second difference is that this

work also includes gravitational parameter uncertainty in the tracking

error levels. (The nominal orbit used in Sim6 may also be slightly

different from the halo-type orbit used here.) Because of the

increased level of solar reflectivity and gravitational parameter

uncertainty, the overall error level is considerably larger, and the

smaller contributors (such as control errors and integration errors)

provide a relatively smaller percentage of the total control costs.
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Lastly, confidence Intervals for the mean Av used in both typesT
of orbits can also be constructed. The form of these confidence

intervals used later in this chapter are

Lower Limit Upper Limit

1/2 1/2Lissajous orbit: AvL + (-t s)/n s V + (t sL

1/2 1/2Halo-type orbit: AvH + (-t s )/n S S AV + (t S
HH H H H H H

The t statistic will have n -1 and n -1 degrees of freedom for theL H

Lissajous and halo-type orbits' confidence intervals, respectively. An

a risk of .01 is used to give a t statistic of 2.462. The numerical

results are depicted in Table 9.

Table 9. Confidence Intervals for Controller I.

# Lissajous Orbit (m/s) Halo-Type Orbit (m/s)

Lower Limit Upper Limit Lower Limit Upper Limit

1-1 .2946 .3607 .3073 .3717

1-2 .7588 .8400 .7351 .8339

1-3 .7187 1.1020 .4860 1.3030

1-4 1.1581 1.6237 1.1408 1.4200

1-5 4.6175 16.2101 8.5585 17.8440

Notice that there is considerable overlap of the intervals in each

case for the halo-type and Lissajous orbits. These 99% confidence

intervals can be used later to compare the station-keeping costs of

Delta-Velocity Controller I with several other approaches such as Delta

Velocity Controller II.
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2. Delta-Velocity Controller II Results

The formulation of Delta-Velocity Controller II requires the

selection of seven weighting matrices (two more than are needed for

controller I). The formulation also requires the determination of

three target times. The weighting matrices used for these simulations

were set for all trials at:

R = 100 1

1

R =10 1 ]
V

1

r=T = [ .1
v

01

Q = 10- 14 .1 ]
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The target times are selected such that if

At mn=60 days then t =t + 25 days, t 2=t + 50 days, and t =t + 75 days,

or

At m=80 days then t =t + 30 days, t =t + 60 days, and t =t + 90 days.tm 102 0 3t0

This second delta-velocity controller has been evaluated under

similar test conditions as in cases 1-4 and 1-5 for the first

delta-velocity controller. Here, they are labeled as cases II-1 and

11-2, respectively. (See Table 5 for parameter selections in cases

1-4 and I-5.) Cases 1-4 and II-1 differ only in the selection of

weighting matrices and target times; case 11-2 uses a larger Av and
mmn

larger dmin than case 1-5. Clearly, the same hypothesis tests can be

conducted on these controller IT cases, and confidence intervals can

also be constructed. Some of the numerical results for cases II-1 and

11-2 are summarized in Table 10. The notation used here is identical

to that used for Table 4.

Table 10. Sample Means and Standard Deviations for Controller II.

Lissajous Orbit Halo-Type Orbit

# At Av d Av s Av s
min min min L L H H

(days) (m/s) (kin) (m/s) (m/s) (m/s) (m/s)

II-1 60 .050 100 .8450 .1603 .8124 .1233

11-2 80 .050 100 1.0852 .4682 1.0740 .j436

The average Av for case 1-4 was 1.3909 meters per second for theT

Lissajous orbit and 1.2804 mete per second for the halo-type orbit.

The improvement in station-keeping costs is significant and perhaps

indicates that future work with this controller may be quite valuable.

Other numerical results for Controller II are listed in Table 11. The

notation used here is identical to that used in Table 5.
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Table 11. Sample Ranges and Number of Control Inputs for Controller II.

Lissajous Orbit Halo-Type Orbit
Average

# At Av d Av Range Av Range Numbermn mmn mmn L H

(days) (m/s) (km) (m/s) (m/s) (m/s) (m/s) of Av's

II-1 60 .050 100 .8450 .57-1.15 .8124 .62-1.08 7-8

11-2 80 .500 100 1.0852 .49-2.40 1.0740 .63-2.03 7-8

Both cases show that some simulations incorporating this

station-keeping strategy require as few as seven manuevers over the

entire 2-year simulation. The range of AvT values for both halo-type

and Lissajous orbits is again listed as another measure of the samples'

dispersion. The data in Tables 10 and 11 can now be tested for

equality of variance and equality of population means between halo-type

and Lissajous orbits within each case.

Initially, the hypothesis that the population variances are equal

is tested. The hypothesis test procedures and the notation are

identical to those used for these tests when evaluating results from

use of Controller I. The hypothesis test and the decision rule are

summarized below; the numerical results and conclusions are listed in

Table 12:

Hypotheses

2 2H :o =
o H L

H :a, cr
I H L

Decision Rule

If F (8/2) F conclude H
(29,29,.005) H L (29,29,.995)' 0

Otherwise, Conclude H .
8
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Therefore, with 99% confidence, it can be concluded that the

population variances are equal when considering cases II-1 and 11-2

(resulting from use of the Delta-Velocity Controller II). Once

population variances are found to be equal, the pooled variance can be

calculated and the hypothesis test for equal population means can be

completed.

Table 12. Results of Tests for Equal Variances for Controller II.

S S

L H
# ) ( F F F Conclusion

(m/s) (m/s) low up

II-1 .1603 .1233 .3704 .5916 2.7 H
0

11-2 .4682 .3436 .3704 .7339 2.7 H0 
J

Again, the hypothesis test for equal population means is conducted

using the t distribution. The hypotheses and decision rule are

Hypotheses:

H I: = H ,

Decision Rule:

*

If -t s t S t, conclude H0

Otherwise, conclude H1

The a risk of .01 is again equally divided in both tails of the t

distribution. The degrees of freedom are, for this hypothesis test,

equal to (nL -1) + (n H-1) and the t statistic is ±t = ±2.66.H (.905,58)

The numerical results and the conclusions are listed in Table 13.
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For Delta-Velocity Controller II, the results clearly indicate

that the means for both types of orbits for cases II-1 and 11-2 are

equal with a 99% level of confidence. Now, in order to prepare for

later cost comparisons, confidence intervals for the mean propellant

costs can be constructed.

Table 13. Test Results for Equality of Means for Controller II.

# Av Av -t t t Conclusion
L H

(m/s) (m/s)

II-i .8450 .8124 -2.66 .4486 2.66 H
0

11-2 1.0852 1.0746 -2.66 .0344 2.66 H
o

The confidence intervals within both cases can be easily

formulated, again using the t distribution. An a risk of .01 is used

to give a t statistic of 2.462. The computed intervals for cases

that include both Controllers I and II are listed in Table 14.

Table 14. Confidence Intervals for the Mean for Controller II.

# Lissajous Orbit (m/s) Halo-Type Orbit (m/s)

Lower Limit Upper Limit Lower Limit Upper Limit

1-4 1.1581 1.6237 1.1408 1.4200

II-I .7729 .9171 .7570 .8678

1-5 4.6175 16.2101 8.5585 17.8440

11-2 .8747 1.2957 .9200 1.2285

Clearly, Delta-Velocity Controller II exhibits a great improvement

over Delta-Velocity Controller I for cases involving Atm n = 80 days,

that is, a minimum control input separation time of 80 days. The

improvement may not completely be due to the added complexity of

Controller I. In fact, Controller I may yield much improved costs

when alternative weighting matrix entries and target times are

selected. This is certainly an area for future inquiry.
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3. State Feedback Controllers

The state feedback controller formulated in this work can be used

as a Continuous Controller or as an On/Off Controller. The results

associated with use of the On/Off Controller are primarily summarized

here. The Continuous Controller was developed in early research and

did not incorporate the realistic constraint of a minimum control

level, nor the use of a minimum deviation distance relative to the

nominal path. The station-keeping costs resulting from simulations

that incorporate the Continuous Controller are quite low; however,

spacecraft thrusters that can deliver continuous low thrust are not

currently operational, but are in development for use in the next

decade. The low level of thrust that may be required to implement the

Continuous Controller may still be too low for the engines currently in

development, and the computed thrust level may be of the same order o'

magnitude as the uncertainty levels of other forces on the spacecraft.

As noted previously, in an important work concerning this topic,
1421

Longuski and Todd have done extensive research in the area of

quantifying the various force levels on a spacecraft in orbit in this

solar system. The results of their work are used to help determine the

minimal control energy that is practical for this controller.

a. ContinuouR Controller Results

The costs resulting from application of the Continuous Controller

are briefly mentioned here, and the preliminary results from one Monte

Carlo trial appear in Table 15. These values are computed for a

spacecraft on the 2-year Lissajous path (depicted in Figure 1-4) in the

vicinity of the interior libration point defined for the Sun-Earth+Moon

system. The error models for each of the six states are listed

vertically in the same order as the elements appear in the residual

state vector; that is, x,y,z,x,y,z. Tracking and injection errors are

modeled at different levels and are thus listed separately. The errors

84



are represented In terms of mean and variance in the form N(p,(2);

2where, of course, the mean Is p and the variance Is (.

The error levels used in Table 15 are clearly not those listed in

Table 1 from the orbit determination error analysis investigation

briefly described In Chapter 1. [241 This preliminary continuous

control work was completed well before the error analysis was begun.

Further work on the Continuous Controller is not anticipated at this

time; the initial, partial results are only presented here for

information and comparison purposes. The Injection errors agree with
[321those found in Rodriquez-Canabal 3 , and the tracking errors

correspond to those of Sim6 [401 for a libration point orbit.

Control input errors are computed as a percent deviation from the

control command. The control errors are then input independently into

each channel. The control inputs are continuous and at a constant

magnitude In each control channel for either 30-day or 45-day steps in

this study. The control inputs are then recalculated and input at the

next computed level for the following 30 or 45 days. This method of

computing control inputs is continued throughout the 2-year orbit.

Position errors are expressed in kilometers and velocity errors in

meters/second.

Table 15. Control Costs Associated with the Continuous Controller.

Bias and Random Error Sources Two-Year Av (meters/second)
Injection Tracking Control T

N(I00,0) N(0,1.52 )
N(100,0) N(0,2.52)N(10,O} N(0,15)
N(100,2) N(O,3) .1422 (30-Day Steps)
N(.05,O) N(O,.0012)

N(.05,0) N(0, .0012)
N(.05,O) N(O,.0032 )

SAME AS SAME AS SAME AS .5362 (45-Day Steps)
ABOVE ABOVE ABOVE
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The constant acceleration (in meters per second per second) used

by the controller over a given period Is easily converted to a Av value

for comparison with other controllers. The acceleration is constant

over a given time step, and the equivalent delta-velocity can be

computed by multiplying the constant acceleration by the duration of

the time step In appropriate units.

The method used here provides results that are approximately equal

to those presented in Breakwell et al. In that study, an integral

quadratic cost function is minimized to compute optimal state feedback

control for a periodic halo-type orbit near the translunar libration

point in the Earth-Moon system. The control accelerations of about

I0-8 g's listed in Breakwell et al are slightly higher than the

8.OxiO-9 g's that are approximately required for the method used here.

It is interesting to note that the solar reflectivity uncertainty at

the two standard deviation level is approximately 4.0x1O -9 g's for this

spacecraft in the libration point orbit. [421 A portion of the

difference in required control levels may be attributed to the much

larger value of p in the Earth-Moon system versus the Sun-Earth+Moon

three-body problem; the orbit used in Breakwell et al is also larger,

in relation to the relative size of the respective three-body systems,

than the nominal path used here. In addition, Breakwell et al assume

that the only nonzero entries in the state error weighting matrix Q

(that appears in the quadratic cost function) are those associated with

position errors; velocity errors are unweighted.

The results listed in Table 15 clearly show that the Continuous

Controller can maintain the spacecraft near the nominal Lissajous path

for 2 years at a very low cost. However, operational requirements

suggest that the On/Off Controller that incorporates the use of some

minimum time between manuevers, minimal control input magnitudes, and a

minimum deviation distance from the nominal path should be

investigated. This On/Off Controller, while still using constant

accelerative Inputs over disjoint time periods, may more closely model

possible thrust devices being developed now for use in the next decade.
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b. On/Off Controller Results

The control costs associated with the On/Off Controller are larger

than those found for cases that incorporate the delta-velocity

controllers in this work. For comparison purposes, the accelerative

inputs have been converted to equivalent delta-velocities and have been

summed to reflect a 2-year total. The Av value can also bemin

converted in a similar way to find minimal accelerative force levels.

For instance, a minimum Av of .015 meters per second is equivalent to a

minimum constant acceration of approximately 8.681xi0 -9 meters per

second per second input for 20 days. A minimum Av of .025 meters per

second is equivalent to a minimum constant acceleration of

approximately 1.4468x10 -8 meters per second per second. The results

from simulations in two cases that incorporate the On/Off Controller

are summarized in Table 16. The notation is identical to that used in

previous sections.

Table 16. Mean and Variance Levels Associated with On/Off Controller.

Lissajous Orbit Halo-Type Orbit

# At Av d Av s Av s
min min min L L H H

(days) (m/s) (km) (m/s) (m/s) (m/s) (m/s)

III-1 20 .015 100 .3255 .0428 .3661 .0785

111-2 40 .025 100 .7033 .2788 .6999 .2340

The equivalence of the population variances for Lissajous and

halo-type orbits can now be tested. Again, Fisher's F test is used to

test for equal population variances. The a level is set at .01, and

the hypotheses and decision rule are given as:
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Hypotheses:

2 2
H : =

0 H L

2 2
H :a- * a

1 H L

Decision Rule:

If F S (s2s) F conclude H
(29,29,.005) H L (29,29,.995) 0

Otherwise, Conclude H1

The numerical results and conclusions of the hypothesis tests for

equal variances are listed in Table 17. The notation is identical to

that used in previous sections.

For both cases, the statistical hypothesis test for equality of

population variances within each case for both Lissajous and halo-type

orbits results in the conclusion that H is, in fact, true. Notice0

that, if a slightly larger a risk were used, cases III-1 and 111-2

would indicate that the two populations do not have equivalent

variances. However, for these cases, we can, in fact, use the pooled

variance equation and can then proceed with the tests for equal

population means.

Table 17. Test Results for Equal Variances for the On/Off Controller

L SH 1
# H F F F Conclusion
-(m/s] (m/s) - u p _

111-i .0488 .0785 .3704 2.5876 2.700 H0

111-2 .2788 .2340 .3704 .7044 2.700 H0

The next step in this analysis is to test for equivalent AvT

population means. The test again uses the student's t distribution,

and an a value of .01 is used. The hypotheses and the decision rule

are given by:
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Hypotheses:

H 0:L = "

HI: L H

Decision Rule:

*

If -t : t M t, conclude H0

Otherwise, conclude H1

The a risk of .01 is again equally divided in both tails of the t

distribution. The degrees of freedom are, for this hypothesis test,

equal to (n -1) + (n -A) and the t statistic is ±t = ±2.66.
L H (.995,58)

The numerical results and the conclusions of these tests are listed in

Table 18. The notation used here is identical to that used in previous

sections.

Table 18. Results of Tests for Equal Means for the On/Off Controller.

# AV Av -t t t Conclusion
L H

(m/s) (m/s)

Ill-i .3255 .3661 -2.66 -2.49 2.66 H
0

111-2 .7033 .6999 -2.66 .1011 2.66 H
0

For both control options Ill-1 and 111-2, the conclusion is that

the population means are equal with 99% confidence. Clearly, with an a

risk slightly greater than 1%, control option III-i would lead to the

conclusion that the two populations have unequal means.

It might be interesting to end this section with a short

comparison of costs produced using the On/Off Controller with those

resulting from simulations with the Delta-Velocity Controller I. This

comparison should be completed with the note that the two types of
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controllers (delta-velocity and on/off) are, in fact, fundamentally

different. Some cases are compared in Table 19 by using confidence

intervals for the mean. The significant overlap of the confidence

intervals for cases I-i and III-1 and for cases 1-3 and 111-2

illustrate the similarity in control costs.

Table 19. Comparison of Costs Resulting from Use of Controller I and
the On/Off Controller.

# Lissajous Orbit (m/s) Halo Orbit (m/s)

Lower Limit Upper Limit Lower Limit Uplier Limit

I-i .2946 .3607 .3073 .3717

III-1 .3063 .3477 .3309 .4013

1-3 .7187 1.1020 .4860 1.3030

111-2 .5780 .8286 .5947 .8051

In comparing the station-keeping costs, the agreement observed

between results from use of these two differing methods is interesting.

However, the On/Off Controller produces costs that are somewhat higher

in general than Controller II, and its performance when the minimum

manuever separation time is extended to 60 or 80 days is disappointing.

Future work in this area is anticipated and may prove valuable. The

last section of this chapter contains a survey of the station-keeping

costs found in several other libration point station-keeping studies.

It also includes some of the results from this work.

4. Survey of Libration Point Orbit Station-Keeping Costs

For completeness, it is important to consider how libration point

orbit station-keeping costs can be comparcd. Certainly the cost of

maintaining the spacecraft In orbit for 2 years could be a common

comparison value. However, the real difficulty here is also closely

related to the focus of the error analysis investigations in Chapter 1
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of this work. A general lack of consistency in input error levels for

both orbit determination error analysis and station-keeping studies for

libration point orbits has been noted. Some of this inconsistency can

be attributed to differing equipment and missions. Some cannot. Two

papers K62'631  concerning the same set of studies, for Instance,

disagreed on the variances associated with the tracking errors that

were used in the station-keeping simulations.

Most studies do not address the fact that the control costs from a

sequence of Monte Carlo station-keeping simulations are random

variables. Each random trial will provide a different result. it is

assumed here that the results published In most studies are actually

the sample means of the station-keeping costs. One study [9 273 has

provided substantial statistical details in an excellent

station-keeping study that could allow the construction of confidence

Intervals for the mean costs in that work. Such completeness of

data presentation is in general lacking in other station-keeping

studies, and any assumptions that must be made about the data will be

stated clearly In this work.

The results of several station-keeping studies are presented in

Table 20. The methods are listed In order of publication date; each

reference Is listed by Its bibliography number and below It Is the date

of publication. Actual flight data Is given for ISEE-3. The input

error levels, If available, are included as standard deviations in

the order consistent with the residual state vector (x,y,z;x,y,z), with

position state errors given In kilometers and velocity state errors

given in milimeters per second. The standard deviations for solar

reflectivity uncertainty are listed as a percent of the nominal value.

The control uncertainty Is a one standard deviation error listed as a

percent of the commanded control, usually Input independently in each

of the three possible channels.
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Table 20. Survey of Station-Keeping Costs for Two-Year Halo Orbits.

SUN-EARTH Li HALO ORBIT STATION-KEEPING ERRORS AND CONTROL COSTS

Solar 2-Year
Reflectivity Control Cost

Sourcc Tracking Errors Uncertainty_ Errors (mis) Remarks

(651 3,30,30 kmn; NIA 10% 15.24 At mn=30 da

(1977) 15,15,30 'nm/s 26.60 At mi 60 da

ISEE-3 N/A N/A N/A 15.0 Actual
[79,801 Flight
(1982) Data

[601 2.7,3.9,3.4 kin; 10% N/A .08 4 cm/s/yr

(1984) 2.4,3.5,1.3 mm/s

162] 1.5,2.5,15 kin; 2.5% 2.5% 0.4 20 cm/s/yr

(1986) 1,1,3 mm/ s

(63] 1.7,2.2,5.5 kmn; 5.0% 2.5% 0.4 .7-.8 rn/si

(1987) 1.4,1.4,2.4 mm/s 4 yrs

(64] I(.,ZTI 20 kin; 5.0% 5.0% 1.3 4 m/s!

(1989) Jx , y )TI:S 15 mm/s 6 yrs

(12,91] 1.5,2.5,15 kmn; N/A 2.5% 0.8 At mn=60 da

(1990) 1,1,3 mm./s (one of

many cases)

This 1.46,2.64,4.81 kin; 13% 10.0% 0.81 At mn=60 da

Work 1.4,1.85,2.49 mm/s (.76-.87)

1.1 At =80Oda

(.92-1.23) min'
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The station-keeping expenses are listed as 2-year costs. When a

study has printed the station-keeping cost for other than a 2-year

value, this cost is computed and the actual cost from the study is

included in the "remarks" column. For the control costs computed In

this work, both the mean value and then the 99% confidence interval

limits (in parentheses) are listed. If the level of errors used in a

given study Is not available, an "N/A" is indicated in the appropriate

column. The error levels used to model orbit injection errors are not

listed in Table 20. In most of these studies, injection errors were

modeled at the same level as tracking errors. In some cases, the

injection errors were modeled at slightly higher levels; however, at

these higher levels, the injection errors generally contribute only

about 15% or less to the station-keeping costs.

Clearly, there appears to be a wide disparity in the

station-keeping costs predicted for a spacecraft in a halo or halo-type

orbit near L in the Sun-Earth system. Some of these differences can1

be explained by the disagreement in error levels; some can be

attributed to the variety of station-keeping algorithms. Also, these

studies do not consider the same nominal orbit. A control cost such as

the 0.8 meters per second for 2 years found in Howell and

Pernicka' 27 1 seems to be quite reasonable. This cost is certainly a

great improvement over the 7.62 to 13.3 meters per second per year

predicted for ISEE-3 and the actual mission results showing

approximately 30 meters per second expended for less than 4 years on

station. Further work developing station-keeping routines that can

tolerate longer minimum times between manuevers (At ), increasedmin

error levels, and the inclusion of a larger d may be beneficial.Din

Investigations concerning the "optimal" selection of weighting matrix

entries may enable existing methods, such as those described in this

work, to provide much improved results. Furthermore, the selection of

target times and control input times for these methods may also be

fruitful areas for future research.
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